3D Printing of Liquid Crystal Polymers for Space Applications

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Caroline Houriet, Evelien Claassen, Chiara Mascolo, Haimo Jöhri, Abel Brieva, Szilvia Szmolka, Sébastien Vincent-Bonnieu, Agnieszka Suliga, Raphael Heeb, Silvan Gantenbein, Ugo Lafont, Thomas Rohr, Kunal Masania
{"title":"3D Printing of Liquid Crystal Polymers for Space Applications","authors":"Caroline Houriet,&nbsp;Evelien Claassen,&nbsp;Chiara Mascolo,&nbsp;Haimo Jöhri,&nbsp;Abel Brieva,&nbsp;Szilvia Szmolka,&nbsp;Sébastien Vincent-Bonnieu,&nbsp;Agnieszka Suliga,&nbsp;Raphael Heeb,&nbsp;Silvan Gantenbein,&nbsp;Ugo Lafont,&nbsp;Thomas Rohr,&nbsp;Kunal Masania","doi":"10.1002/admt.202400571","DOIUrl":null,"url":null,"abstract":"<p>Fused Filament Fabrication is a promising manufacturing technology for the circularity of space missions. Potential scenarios include in-orbit applications to maximize mission life and to support long-term exploration missions with in situ manufacturing and recycling. However, its adoption is restricted by the availability of engineering polymers displaying mechanical performance combined with resistance to space conditions. Here, a thermotropic Liquid Crystal Polymer (LCP) is reported as a candidate material with extrusion 3D printing. To expand its scope of applicability to structural parts for space applications, four different exposure conditions are studied: thermal cycling under vacuum, atomic oxygen, UV, and electron irradiations. While 1 MeV-electron irradiation leads to a green coloration due to annealable color centers, the mechanical performance is only slightly decreased in dynamic mode. It is also found that increased printing temperature improves transverse strength and resistance to thermal cycling with the trade-off of tensile stiffness and strength. Samples exposed to thermal cycling and the highest irradiation dose at lower printing temperatures still display a Young's modulus of 30 GPa and 503 MPa of tensile strength which is exceptionally high for a 3D-printed polymer. For the types of exposure studied, overall, the results indicate that LCP 3D-printed parts are well suited for space applications.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400571","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400571","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fused Filament Fabrication is a promising manufacturing technology for the circularity of space missions. Potential scenarios include in-orbit applications to maximize mission life and to support long-term exploration missions with in situ manufacturing and recycling. However, its adoption is restricted by the availability of engineering polymers displaying mechanical performance combined with resistance to space conditions. Here, a thermotropic Liquid Crystal Polymer (LCP) is reported as a candidate material with extrusion 3D printing. To expand its scope of applicability to structural parts for space applications, four different exposure conditions are studied: thermal cycling under vacuum, atomic oxygen, UV, and electron irradiations. While 1 MeV-electron irradiation leads to a green coloration due to annealable color centers, the mechanical performance is only slightly decreased in dynamic mode. It is also found that increased printing temperature improves transverse strength and resistance to thermal cycling with the trade-off of tensile stiffness and strength. Samples exposed to thermal cycling and the highest irradiation dose at lower printing temperatures still display a Young's modulus of 30 GPa and 503 MPa of tensile strength which is exceptionally high for a 3D-printed polymer. For the types of exposure studied, overall, the results indicate that LCP 3D-printed parts are well suited for space applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信