Magdalena Woźniak, Jerzy Majka, Patrycja Kwaśniewska-Sip, Tomasz Krystofiak, Barbara Lis, Edward Roszyk, Grzegorz Cofta, Izabela Ratajczak
{"title":"Physical and mechanical properties of wood treated with chitosan-caffeine formulations","authors":"Magdalena Woźniak, Jerzy Majka, Patrycja Kwaśniewska-Sip, Tomasz Krystofiak, Barbara Lis, Edward Roszyk, Grzegorz Cofta, Izabela Ratajczak","doi":"10.1007/s00107-025-02226-y","DOIUrl":null,"url":null,"abstract":"<div><p>There is growing interest in developing natural wood preservatives, particularly in response to the escalating challenges posed by environmental degradation. Caffeine is a bio-based preservative that improves decay resistance of treated wood, however it is also sensitive to leaching from wood when exposed to water. Combining chitosan-caffeine formulations limits the leaching of caffeine from impregnated wood, thereby increasing its resistance even under outdoor conditions. This research aimed to evaluate the properties of wood impregnated with chitosan-caffeine formulations, focusing on wettability (contact angle measurement), mechanical properties (bending strength), and sorption behavior. The contact angle measurement revealed that wood treated with chitosan and chitosan-caffeine formulations exhibited an improvement in water resistance compared to untreated wood and wood treated with caffeine alone. However, this resistance showed only for short-term application. Both caffeine and chitosan treatments reduced the equilibrium moisture content during adsorption and desorption phases in the relative air humidity range from 0 to 0.95. The application of chitosan-caffeine formulations for wood impregnation resulted in a reduction in equilibrium moisture content, as well as hygroscopicity of the treated wood. Treatment with all formulation variants had no effect on the mechanical parameters, including modulus of elasticity and modulus of rupture. In addition, FTIR results indicated that both caffeine and chitosan interact with wood components. These findings suggest that chitosan-caffeine formulations are promising as natural wood preservatives, offering an improved hygroscopicity while maintaining the mechanical properties of the treated wood.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02226-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
There is growing interest in developing natural wood preservatives, particularly in response to the escalating challenges posed by environmental degradation. Caffeine is a bio-based preservative that improves decay resistance of treated wood, however it is also sensitive to leaching from wood when exposed to water. Combining chitosan-caffeine formulations limits the leaching of caffeine from impregnated wood, thereby increasing its resistance even under outdoor conditions. This research aimed to evaluate the properties of wood impregnated with chitosan-caffeine formulations, focusing on wettability (contact angle measurement), mechanical properties (bending strength), and sorption behavior. The contact angle measurement revealed that wood treated with chitosan and chitosan-caffeine formulations exhibited an improvement in water resistance compared to untreated wood and wood treated with caffeine alone. However, this resistance showed only for short-term application. Both caffeine and chitosan treatments reduced the equilibrium moisture content during adsorption and desorption phases in the relative air humidity range from 0 to 0.95. The application of chitosan-caffeine formulations for wood impregnation resulted in a reduction in equilibrium moisture content, as well as hygroscopicity of the treated wood. Treatment with all formulation variants had no effect on the mechanical parameters, including modulus of elasticity and modulus of rupture. In addition, FTIR results indicated that both caffeine and chitosan interact with wood components. These findings suggest that chitosan-caffeine formulations are promising as natural wood preservatives, offering an improved hygroscopicity while maintaining the mechanical properties of the treated wood.
期刊介绍:
European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets.
European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.