Equal volume impregnation–air calcination synthesis of lithium-doped MgO nanoplates for enhanced antibacterial performance†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-02-19 DOI:10.1039/D4RA07138G
Xiaoyi Li, Junmei Pu, Yanqun Zu, Yongmei He, Fangdong Zhan, Xi Li and Jiao Zhao
{"title":"Equal volume impregnation–air calcination synthesis of lithium-doped MgO nanoplates for enhanced antibacterial performance†","authors":"Xiaoyi Li, Junmei Pu, Yanqun Zu, Yongmei He, Fangdong Zhan, Xi Li and Jiao Zhao","doi":"10.1039/D4RA07138G","DOIUrl":null,"url":null,"abstract":"<p >Magnesium oxide nanomaterials (nano-MgO) have many advantages, such as environmentally benign, high thermal stability, no need of illumination, broad-spectrum antibacterial activity and more. However, its low activity has restricted the application in environmental purification and antibacterial disinfection. Herein, the equal volume impregnation–air calcination method was first used in the synthesis of nano-MgO and a series of nano-MgO with varying amounts of Li doping were prepared to enhance their antibacterial properties. Li doping leads to the distortion of MgO lattice structure and the presence of oxygen vacancies, enhancing oxygen absorption and alkalinity. This enhancement effectively promotes the formation of reactive oxygen species (ROS) and maintains its high chemical reactivity. The Li doped nano-MgO at 100 μg mL<small><sup>−1</sup></small> showed a significant improvement in antibacterial activity, achieving the antibacterial ratio of 99.6% against <em>Escherichia coli</em> (<em>E. coli</em>). Moreover, the contribution of alkalinity, ROS, physical morphology effect, and dissolved ions (Mg<small><sup>2+</sup></small> and Li<small><sup>+</sup></small>) to the antibacterial ability was further discussed. Especially, the results of dialysis tube test indirectly indicated that ROS played the crucial role in enhancing the antibacterial performance of nano-MgO. This study lays an essential foundation for further investigation into the antibacterial performance and mechanism of nano-MgO.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 7","pages":" 5639-5647"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07138g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07138g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium oxide nanomaterials (nano-MgO) have many advantages, such as environmentally benign, high thermal stability, no need of illumination, broad-spectrum antibacterial activity and more. However, its low activity has restricted the application in environmental purification and antibacterial disinfection. Herein, the equal volume impregnation–air calcination method was first used in the synthesis of nano-MgO and a series of nano-MgO with varying amounts of Li doping were prepared to enhance their antibacterial properties. Li doping leads to the distortion of MgO lattice structure and the presence of oxygen vacancies, enhancing oxygen absorption and alkalinity. This enhancement effectively promotes the formation of reactive oxygen species (ROS) and maintains its high chemical reactivity. The Li doped nano-MgO at 100 μg mL−1 showed a significant improvement in antibacterial activity, achieving the antibacterial ratio of 99.6% against Escherichia coli (E. coli). Moreover, the contribution of alkalinity, ROS, physical morphology effect, and dissolved ions (Mg2+ and Li+) to the antibacterial ability was further discussed. Especially, the results of dialysis tube test indirectly indicated that ROS played the crucial role in enhancing the antibacterial performance of nano-MgO. This study lays an essential foundation for further investigation into the antibacterial performance and mechanism of nano-MgO.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信