A Helmet Detection Algorithm Based on Transformers with Deformable Attention Module

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Songle Chen;Hongbo Sun;Yuxin Wu;Lei Shang;Xiukai Ruan
{"title":"A Helmet Detection Algorithm Based on Transformers with Deformable Attention Module","authors":"Songle Chen;Hongbo Sun;Yuxin Wu;Lei Shang;Xiukai Ruan","doi":"10.23919/cje.2023.00.346","DOIUrl":null,"url":null,"abstract":"Wearing a helmet is one of the effective measures to protect workers' safety. To address the challenges of severe occlusion, multi-scale, and small target issues in helmet detection, this paper proposes a helmet detection algorithm based on deformable attention transformers. The main contributions of this paper are as follows. A compact end-to-end network architecture for safety helmet detection based on transformers is proposed. It cancels the computationally intensive transformer encoder module in the existing detection transformer (DETR) and uses the transformer decoder module directly on the output of feature extraction for query decoding, which effectively improves the efficiency of helmet detection. A novel feature extraction network named Swin transformer with deformable attention module (DSwin transformer) is proposed. By sparse cross-window attention, it enhances the contextual awareness of multi-scale features extracted by Swin transformer, and keeps high computational efficiency simultaneously. The proposed method generates the query reference points and query embeddings based on the joint prediction probabilities, and selects an appropriate number of decoding feature maps and sparse sampling points for query decoding, which further enhance the inference capability and processing speed. On the benchmark safety-helmet-wearing-dataset (SHWD), the proposed method achieves the average detection accuracy mAP@0.5 of 95.4% with 133.35G floating-point operations per second (FLOPs) and 20 frames per second (FPS), the state-of-the-art method for safety helmet detection.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"34 1","pages":"229-241"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891976","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891976/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wearing a helmet is one of the effective measures to protect workers' safety. To address the challenges of severe occlusion, multi-scale, and small target issues in helmet detection, this paper proposes a helmet detection algorithm based on deformable attention transformers. The main contributions of this paper are as follows. A compact end-to-end network architecture for safety helmet detection based on transformers is proposed. It cancels the computationally intensive transformer encoder module in the existing detection transformer (DETR) and uses the transformer decoder module directly on the output of feature extraction for query decoding, which effectively improves the efficiency of helmet detection. A novel feature extraction network named Swin transformer with deformable attention module (DSwin transformer) is proposed. By sparse cross-window attention, it enhances the contextual awareness of multi-scale features extracted by Swin transformer, and keeps high computational efficiency simultaneously. The proposed method generates the query reference points and query embeddings based on the joint prediction probabilities, and selects an appropriate number of decoding feature maps and sparse sampling points for query decoding, which further enhance the inference capability and processing speed. On the benchmark safety-helmet-wearing-dataset (SHWD), the proposed method achieves the average detection accuracy mAP@0.5 of 95.4% with 133.35G floating-point operations per second (FLOPs) and 20 frames per second (FPS), the state-of-the-art method for safety helmet detection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信