Xuanxuan Ban;Jing Liang;Kunjie Yu;Yaonan Wang;Kangjia Qiao;Jinzhu Peng;Dunwei Gong;Canyun Dai
{"title":"A Local Knowledge Transfer-Based Evolutionary Algorithm for Constrained Multitask Optimization","authors":"Xuanxuan Ban;Jing Liang;Kunjie Yu;Yaonan Wang;Kangjia Qiao;Jinzhu Peng;Dunwei Gong;Canyun Dai","doi":"10.1109/TSMC.2024.3520322","DOIUrl":null,"url":null,"abstract":"Evolutionary multitask optimization (EMTO) can solve multiple tasks simultaneously by leveraging the relevant information between tasks, but existing EMTO algorithms do not take into account the fact that almost all problems in the real world contain constraints. To address this dilemma, this article studies a local knowledge transfer-based evolutionary algorithm for constrained multitask optimization. To be specific, each task population is divided into multiple niches to enhance the diversity and control the intensity of knowledge transfer, thus avoiding excessive transfer of knowledge. Then a new similarity judgment method based on the information feedback of pioneer individuals is developed to judge the similarity between tasks and whether to perform knowledge transfer. Furthermore, two different transfer methods: a direct transfer and a learning transfer, are devised to perform knowledge transfer among niches pertaining to different tasks. In addition, an excellent-information-guided mutation mechanism is proposed to prevent niches from getting trapped in local optima and to promote rapid convergence. The system experiment on 18 constrained multitask test instances and 2 real-world problems demonstrate that the proposed algorithm outperforms or is at least comparable to other EMTO algorithms and constrained single-objective optimization algorithms.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 3","pages":"2183-2195"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819618/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Evolutionary multitask optimization (EMTO) can solve multiple tasks simultaneously by leveraging the relevant information between tasks, but existing EMTO algorithms do not take into account the fact that almost all problems in the real world contain constraints. To address this dilemma, this article studies a local knowledge transfer-based evolutionary algorithm for constrained multitask optimization. To be specific, each task population is divided into multiple niches to enhance the diversity and control the intensity of knowledge transfer, thus avoiding excessive transfer of knowledge. Then a new similarity judgment method based on the information feedback of pioneer individuals is developed to judge the similarity between tasks and whether to perform knowledge transfer. Furthermore, two different transfer methods: a direct transfer and a learning transfer, are devised to perform knowledge transfer among niches pertaining to different tasks. In addition, an excellent-information-guided mutation mechanism is proposed to prevent niches from getting trapped in local optima and to promote rapid convergence. The system experiment on 18 constrained multitask test instances and 2 real-world problems demonstrate that the proposed algorithm outperforms or is at least comparable to other EMTO algorithms and constrained single-objective optimization algorithms.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.