{"title":"Distributed Strain Sensing Based on Sensing Range Enhanced Optical Frequency Domain Reflectometry by Modified Longest Common Substring Algorithm","authors":"Xiang Zheng;Weilin Xie;Qiang Yang;Jiang Yang;Congfan Wang;Xin Li;Kaiyue Tan;Wei Wei;Yi Dong","doi":"10.1109/JLT.2025.3526937","DOIUrl":null,"url":null,"abstract":"Conventional cross-correlation is commonly used in the estimation of the spectral shift for optical frequency-domain reflectometry (OFDR) based distributed sensing. However, the potential errors in cases of relatively large shifts have severely limited the sensing dynamic range. We report a modified longest common substring algorithm that exploits two-dimensional image processing for more accurate shift estimation. Theoretical study for the conventional cross-correlation is conducted, which reveals quantitatively the underlying mechanism for the emergence of the correlation errors. By adopting the relative error function as the similarity function in connection with the binarization and normalized projection, it allows for a reduction for the possibility of large estimation error in a two-dimensional image processing manner, leading to a substantial improvement in the sensing range. Experimental demonstrations have verified a remarkable enhancement of about 18.7 times in strain sensing range, which accounts for ∼56.2% of the effective sweep range. The proposed algorithm not only permits opportunities in OFDR based distributed sensing, but also promises enhanced fidelity for applications where cross-correlation is concerned.","PeriodicalId":16144,"journal":{"name":"Journal of Lightwave Technology","volume":"43 4","pages":"1952-1961"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lightwave Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10833799/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional cross-correlation is commonly used in the estimation of the spectral shift for optical frequency-domain reflectometry (OFDR) based distributed sensing. However, the potential errors in cases of relatively large shifts have severely limited the sensing dynamic range. We report a modified longest common substring algorithm that exploits two-dimensional image processing for more accurate shift estimation. Theoretical study for the conventional cross-correlation is conducted, which reveals quantitatively the underlying mechanism for the emergence of the correlation errors. By adopting the relative error function as the similarity function in connection with the binarization and normalized projection, it allows for a reduction for the possibility of large estimation error in a two-dimensional image processing manner, leading to a substantial improvement in the sensing range. Experimental demonstrations have verified a remarkable enhancement of about 18.7 times in strain sensing range, which accounts for ∼56.2% of the effective sweep range. The proposed algorithm not only permits opportunities in OFDR based distributed sensing, but also promises enhanced fidelity for applications where cross-correlation is concerned.
期刊介绍:
The Journal of Lightwave Technology is comprised of original contributions, both regular papers and letters, covering work in all aspects of optical guided-wave science, technology, and engineering. Manuscripts are solicited which report original theoretical and/or experimental results which advance the technological base of guided-wave technology. Tutorial and review papers are by invitation only. Topics of interest include the following: fiber and cable technologies, active and passive guided-wave componentry (light sources, detectors, repeaters, switches, fiber sensors, etc.); integrated optics and optoelectronics; and systems, subsystems, new applications and unique field trials. System oriented manuscripts should be concerned with systems which perform a function not previously available, out-perform previously established systems, or represent enhancements in the state of the art in general.