Multistability Analysis of Fractional-Order State-Dependent Switched Competitive Neural Networks With Sigmoidal Activation Functions

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xiaobing Nie;Boqiang Cao;Wei Xing Zheng;Jinde Cao
{"title":"Multistability Analysis of Fractional-Order State-Dependent Switched Competitive Neural Networks With Sigmoidal Activation Functions","authors":"Xiaobing Nie;Boqiang Cao;Wei Xing Zheng;Jinde Cao","doi":"10.1109/TSMC.2024.3520823","DOIUrl":null,"url":null,"abstract":"This work explores the issue of multistability for a competitive neural network (NN) class with sigmoidal activation functions (AFs) involving state-dependent switching and fractional-order derivative. Specifically, first, we consider three different switching point locations, and establish some sufficient criteria ensuring that NNs with n-neurons can have, and only have, <inline-formula> <tex-math>$5^{n_{1}}\\cdot 3^{n_{2}}$ </tex-math></inline-formula> equilibrium points (EPs) with <inline-formula> <tex-math>$n_{1}+n_{2}=n$ </tex-math></inline-formula>, by utilizing the geometric features of the sigmoidal functions, the fixed point theorem, the Filippov’s EP definition, and the contraction mapping theorem. Then, based on novel Lyapunov functions and by applying the fractional-order calculus theory, it is demonstrated that <inline-formula> <tex-math>$3^{n_{1}}\\cdot 2^{n_{2}}$ </tex-math></inline-formula> out of <inline-formula> <tex-math>$5^{n_{1}}\\cdot 3^{n_{2}}$ </tex-math></inline-formula> total EPs are locally stable. This work’s investigation reveals that competitive NNs with switching afford more storage capacity compared to the nonswitching case. Additionally, our results are valid for the integer-order and fractional-order switched NNs, improving and generalizing current works. Furthermore, two numerical examples and an application example of associative memory are provided to validate the effectiveness of the theoretical findings, and the way various fractional orders affect the NNs’ convergence speed is shown through simulations.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 3","pages":"2106-2119"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10820870/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the issue of multistability for a competitive neural network (NN) class with sigmoidal activation functions (AFs) involving state-dependent switching and fractional-order derivative. Specifically, first, we consider three different switching point locations, and establish some sufficient criteria ensuring that NNs with n-neurons can have, and only have, $5^{n_{1}}\cdot 3^{n_{2}}$ equilibrium points (EPs) with $n_{1}+n_{2}=n$ , by utilizing the geometric features of the sigmoidal functions, the fixed point theorem, the Filippov’s EP definition, and the contraction mapping theorem. Then, based on novel Lyapunov functions and by applying the fractional-order calculus theory, it is demonstrated that $3^{n_{1}}\cdot 2^{n_{2}}$ out of $5^{n_{1}}\cdot 3^{n_{2}}$ total EPs are locally stable. This work’s investigation reveals that competitive NNs with switching afford more storage capacity compared to the nonswitching case. Additionally, our results are valid for the integer-order and fractional-order switched NNs, improving and generalizing current works. Furthermore, two numerical examples and an application example of associative memory are provided to validate the effectiveness of the theoretical findings, and the way various fractional orders affect the NNs’ convergence speed is shown through simulations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信