{"title":"Multistability Analysis of Fractional-Order State-Dependent Switched Competitive Neural Networks With Sigmoidal Activation Functions","authors":"Xiaobing Nie;Boqiang Cao;Wei Xing Zheng;Jinde Cao","doi":"10.1109/TSMC.2024.3520823","DOIUrl":null,"url":null,"abstract":"This work explores the issue of multistability for a competitive neural network (NN) class with sigmoidal activation functions (AFs) involving state-dependent switching and fractional-order derivative. Specifically, first, we consider three different switching point locations, and establish some sufficient criteria ensuring that NNs with n-neurons can have, and only have, <inline-formula> <tex-math>$5^{n_{1}}\\cdot 3^{n_{2}}$ </tex-math></inline-formula> equilibrium points (EPs) with <inline-formula> <tex-math>$n_{1}+n_{2}=n$ </tex-math></inline-formula>, by utilizing the geometric features of the sigmoidal functions, the fixed point theorem, the Filippov’s EP definition, and the contraction mapping theorem. Then, based on novel Lyapunov functions and by applying the fractional-order calculus theory, it is demonstrated that <inline-formula> <tex-math>$3^{n_{1}}\\cdot 2^{n_{2}}$ </tex-math></inline-formula> out of <inline-formula> <tex-math>$5^{n_{1}}\\cdot 3^{n_{2}}$ </tex-math></inline-formula> total EPs are locally stable. This work’s investigation reveals that competitive NNs with switching afford more storage capacity compared to the nonswitching case. Additionally, our results are valid for the integer-order and fractional-order switched NNs, improving and generalizing current works. Furthermore, two numerical examples and an application example of associative memory are provided to validate the effectiveness of the theoretical findings, and the way various fractional orders affect the NNs’ convergence speed is shown through simulations.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 3","pages":"2106-2119"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10820870/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This work explores the issue of multistability for a competitive neural network (NN) class with sigmoidal activation functions (AFs) involving state-dependent switching and fractional-order derivative. Specifically, first, we consider three different switching point locations, and establish some sufficient criteria ensuring that NNs with n-neurons can have, and only have, $5^{n_{1}}\cdot 3^{n_{2}}$ equilibrium points (EPs) with $n_{1}+n_{2}=n$ , by utilizing the geometric features of the sigmoidal functions, the fixed point theorem, the Filippov’s EP definition, and the contraction mapping theorem. Then, based on novel Lyapunov functions and by applying the fractional-order calculus theory, it is demonstrated that $3^{n_{1}}\cdot 2^{n_{2}}$ out of $5^{n_{1}}\cdot 3^{n_{2}}$ total EPs are locally stable. This work’s investigation reveals that competitive NNs with switching afford more storage capacity compared to the nonswitching case. Additionally, our results are valid for the integer-order and fractional-order switched NNs, improving and generalizing current works. Furthermore, two numerical examples and an application example of associative memory are provided to validate the effectiveness of the theoretical findings, and the way various fractional orders affect the NNs’ convergence speed is shown through simulations.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.