Artificial Neural Dynamics for Portfolio Allocation: An Optimization Perspective

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xinwei Cao;Yiguo Yang;Shuai Li;Predrag S. Stanimirović;Vasilios N. Katsikis
{"title":"Artificial Neural Dynamics for Portfolio Allocation: An Optimization Perspective","authors":"Xinwei Cao;Yiguo Yang;Shuai Li;Predrag S. Stanimirović;Vasilios N. Katsikis","doi":"10.1109/TSMC.2024.3514919","DOIUrl":null,"url":null,"abstract":"Real-time high-frequency trading poses a significant challenge to the classical portfolio allocation problem, demanding rapid computational efficiency for constructing Markowitz model-based portfolios. Building on the principles of arbitrage pricing theory (APT), this study introduces a dynamic neural network model aimed at minimizing investment risk, optimizing portfolio allocation within predefined constraints, and maximizing returns. First, a convex optimization objective function incorporating risk constraints is formulated based on APT principles. This is followed by the introduction of a novel dynamic neural network model designed to solve the convex optimization problem, accompanied by comprehensive theoretical analysis and rigorous proofs. The study uses two distinct datasets sourced from Yahoo Finance, consisting of 30 selected stocks, covering a span of 250 valid trading days to validate the proposed methodology. The results of 30 different stock market scenario experiments indicate that, when the upper limit for investment risk is set at <inline-formula> <tex-math>$3.285 \\times 10^{-4}$ </tex-math></inline-formula>, the expected maximum investment return exceeds the Dow Jones Industrial Average (DJIA) index by 16.2816%. These empirical findings highlight the viability, stability, and efficacy of the proposed approach and framework, demonstrating its potential applicability for real-time, high-frequency trading scenarios. Furthermore, the outcomes suggest policy implications for risk management and portfolio optimization in dynamic financial environments.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 3","pages":"1960-1971"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10812177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812177/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time high-frequency trading poses a significant challenge to the classical portfolio allocation problem, demanding rapid computational efficiency for constructing Markowitz model-based portfolios. Building on the principles of arbitrage pricing theory (APT), this study introduces a dynamic neural network model aimed at minimizing investment risk, optimizing portfolio allocation within predefined constraints, and maximizing returns. First, a convex optimization objective function incorporating risk constraints is formulated based on APT principles. This is followed by the introduction of a novel dynamic neural network model designed to solve the convex optimization problem, accompanied by comprehensive theoretical analysis and rigorous proofs. The study uses two distinct datasets sourced from Yahoo Finance, consisting of 30 selected stocks, covering a span of 250 valid trading days to validate the proposed methodology. The results of 30 different stock market scenario experiments indicate that, when the upper limit for investment risk is set at $3.285 \times 10^{-4}$ , the expected maximum investment return exceeds the Dow Jones Industrial Average (DJIA) index by 16.2816%. These empirical findings highlight the viability, stability, and efficacy of the proposed approach and framework, demonstrating its potential applicability for real-time, high-frequency trading scenarios. Furthermore, the outcomes suggest policy implications for risk management and portfolio optimization in dynamic financial environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信