Zhengyu Zhang;Ruisi He;Mi Yang;Xuejian Zhang;Ziyi Qi;Hang Mi;Guiqi Sun;Jingya Yang;Bo Ai
{"title":"Non-Stationarity Characteristics in Dynamic Vehicular ISAC Channels at 28 GHz","authors":"Zhengyu Zhang;Ruisi He;Mi Yang;Xuejian Zhang;Ziyi Qi;Hang Mi;Guiqi Sun;Jingya Yang;Bo Ai","doi":"10.23919/cje.2024.00.003","DOIUrl":null,"url":null,"abstract":"Integrated sensing and communications (ISAC) is a potential technology of 6G, aiming to enable end-to-end information processing ability and native perception capability for future communication systems. As an important part of the ISAC application scenarios, ISAC aided vehicle-to-everything (V2X) can improve the traffic efficiency and safety through intercommunication and synchronous perception. It is necessary to carry out measurement, characterization, and modeling for vehicular ISAC channels as the basic theoretical support for system design. In this paper, dynamic vehicular ISAC channel measurements at 28 GHz are carried out and provide data for the characterization of non-stationarity characteristics. Based on the actual measurements, this paper analyzes the time-varying PDPs, RMSDS and non-stationarity characteristics of front, lower front, left and right perception directions in a complicated V2X scenarios. The research in this paper can enrich the investigation of vehicular ISAC channels and enable the analysis and design of vehicular ISAC systems.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"34 1","pages":"73-81"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891984","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891984/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated sensing and communications (ISAC) is a potential technology of 6G, aiming to enable end-to-end information processing ability and native perception capability for future communication systems. As an important part of the ISAC application scenarios, ISAC aided vehicle-to-everything (V2X) can improve the traffic efficiency and safety through intercommunication and synchronous perception. It is necessary to carry out measurement, characterization, and modeling for vehicular ISAC channels as the basic theoretical support for system design. In this paper, dynamic vehicular ISAC channel measurements at 28 GHz are carried out and provide data for the characterization of non-stationarity characteristics. Based on the actual measurements, this paper analyzes the time-varying PDPs, RMSDS and non-stationarity characteristics of front, lower front, left and right perception directions in a complicated V2X scenarios. The research in this paper can enrich the investigation of vehicular ISAC channels and enable the analysis and design of vehicular ISAC systems.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.