Multibranch Horizontal Augmentation Network for Continuous Remaining Useful Life Prediction

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Jianghong Zhou;Jun Luo;Huayan Pu;Yi Qin
{"title":"Multibranch Horizontal Augmentation Network for Continuous Remaining Useful Life Prediction","authors":"Jianghong Zhou;Jun Luo;Huayan Pu;Yi Qin","doi":"10.1109/TSMC.2024.3519347","DOIUrl":null,"url":null,"abstract":"Aiming at the large differences between tasks in continuous remaining useful life (RUL) prediction and the limited information capturing capability of the existing continuous learning (CL) methods, this article develops a novel multibranch horizontal augmentation network (MBHAN). First, a hierarchical self-attention (HSA) mechanism is proposed to capture the local degradation features and dependencies at different scales and enhance the representation capacity of RUL prediction model. Based on HSA and temporal convolutional network (TCN), a time-frequency fusion TCN (TFFTCN) is designed to mine the hidden degradation information from the time-domain and frequency-domain data. Then, a memory weight constraint (MWC) regularization term is built to control the update of important parameters for pervious tasks during the learning of new task. A horizontal network augmentation rule based on the task similarity and MWC is proposed, including the augmentation of a task branch network for small task difference and the augmentation of a feature extraction backbone network for large task difference. On this basis, the MBHAN is proposed to continuously predict RUL of machinery. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that TFFTCN achieve an average accuracy of 93% across both datasets, surpassing the existing prediction methods.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 3","pages":"2237-2249"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10827820/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the large differences between tasks in continuous remaining useful life (RUL) prediction and the limited information capturing capability of the existing continuous learning (CL) methods, this article develops a novel multibranch horizontal augmentation network (MBHAN). First, a hierarchical self-attention (HSA) mechanism is proposed to capture the local degradation features and dependencies at different scales and enhance the representation capacity of RUL prediction model. Based on HSA and temporal convolutional network (TCN), a time-frequency fusion TCN (TFFTCN) is designed to mine the hidden degradation information from the time-domain and frequency-domain data. Then, a memory weight constraint (MWC) regularization term is built to control the update of important parameters for pervious tasks during the learning of new task. A horizontal network augmentation rule based on the task similarity and MWC is proposed, including the augmentation of a task branch network for small task difference and the augmentation of a feature extraction backbone network for large task difference. On this basis, the MBHAN is proposed to continuously predict RUL of machinery. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that TFFTCN achieve an average accuracy of 93% across both datasets, surpassing the existing prediction methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信