Dynamic synergy optimization (DSO): An integrated approach of metaheuristic algorithms and PID control for real-time stability enhancement in refrigeration systems

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Jieyu Li, Xingxiang Xie, Leyang Dai, Lijie Xu
{"title":"Dynamic synergy optimization (DSO): An integrated approach of metaheuristic algorithms and PID control for real-time stability enhancement in refrigeration systems","authors":"Jieyu Li,&nbsp;Xingxiang Xie,&nbsp;Leyang Dai,&nbsp;Lijie Xu","doi":"10.1016/j.ijrefrig.2025.02.015","DOIUrl":null,"url":null,"abstract":"<div><div>With increasing global energy demand, improving the efficiency of refrigeration systems and reducing their environmental impact is crucial, especially since refrigeration often accounts for a significant portion of energy consumption. Traditional Proportional-Integral-Derivative (PID) control methods struggle with the complex, nonlinear nature of refrigeration systems, resulting in slow response times and limited optimization capabilities. While metaheuristic algorithms can perform global searches, they often lack the real-time fine-tuning necessary for optimal dynamic control. This study introduces Dynamic Synergy Optimization (DSO), a novel framework that integrates metaheuristic algorithms with PID control. Unlike conventional methods that only turn PID parameters using metaheuristics, DSO combines the global optimization power of metaheuristics with the real-time adjustment capabilities of PID, providing effective global search and local refinement. The PID controller ensures quick adaptation and system stability. Experimental results show that the Harris Hawks Optimization algorithm integrated with PID control outperforms standard PID control with a 63.3 % reduction in response time, a 69.2 % decrease in stabilization time, and a 19.65 % enhancement in energy efficiency. The DSO strategy significantly enhances the dynamic response and stability of refrigeration systems, reduces hysteresis, and accelerates the attainment of steady-state operation.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"173 ","pages":"Pages 100-110"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700725000659","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing global energy demand, improving the efficiency of refrigeration systems and reducing their environmental impact is crucial, especially since refrigeration often accounts for a significant portion of energy consumption. Traditional Proportional-Integral-Derivative (PID) control methods struggle with the complex, nonlinear nature of refrigeration systems, resulting in slow response times and limited optimization capabilities. While metaheuristic algorithms can perform global searches, they often lack the real-time fine-tuning necessary for optimal dynamic control. This study introduces Dynamic Synergy Optimization (DSO), a novel framework that integrates metaheuristic algorithms with PID control. Unlike conventional methods that only turn PID parameters using metaheuristics, DSO combines the global optimization power of metaheuristics with the real-time adjustment capabilities of PID, providing effective global search and local refinement. The PID controller ensures quick adaptation and system stability. Experimental results show that the Harris Hawks Optimization algorithm integrated with PID control outperforms standard PID control with a 63.3 % reduction in response time, a 69.2 % decrease in stabilization time, and a 19.65 % enhancement in energy efficiency. The DSO strategy significantly enhances the dynamic response and stability of refrigeration systems, reduces hysteresis, and accelerates the attainment of steady-state operation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信