Optical and computational investigations: Assessing the impact of absolute ethanol mixtures on diesel spray behavior

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-02-18 DOI:10.1016/j.fuel.2025.134756
I Komang Gede Tryas Agameru Putra , Ho Xuan Duy Nguyen , Quang Khai Tran , Ocktaeck Lim
{"title":"Optical and computational investigations: Assessing the impact of absolute ethanol mixtures on diesel spray behavior","authors":"I Komang Gede Tryas Agameru Putra ,&nbsp;Ho Xuan Duy Nguyen ,&nbsp;Quang Khai Tran ,&nbsp;Ocktaeck Lim","doi":"10.1016/j.fuel.2025.134756","DOIUrl":null,"url":null,"abstract":"<div><div>Spray characteristics are among the variables that have a direct impact on both engine performance and engine design, thus significantly affecting the ignition and emission parameters of diesel engines. This study combines experimental methods and computational fluid dynamics simulations to comprehensively investigate spray characteristics. A constant volume chamber replicating diesel engine conditions is utilized to assess the impact of incorporating absolute ethanol in diesel blends. MATLAB image processing techniques are employed to analyze the spray development images captured using a high-speed camera with the shadowgraph optical method. Macroscopic spray features, including spray penetration length, cone angle, and spray area are studied experimentally, while simulations explore microscopic features like Sauter mean diameter. The experimental matrix varies the absolute ethanol content (10%, 20%, 30%) in the blends and the injection strategies. Results reveal that ethanol addition alters the fuel’s physicochemical properties, reducing density, viscosity, and surface tension, leading to shorter penetration and broader cone angle. Blends with lower viscosity and surface tension exhibit larger cone angles, while higher-density blends boost penetration. Increasing ethanol concentration further reduces droplet size, indicating enhanced spray breakup and atomization processes. Moreover, the spray characteristics are also influenced by injection parameters highlighting the importance of an optimized injection strategy in spray development.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"390 ","pages":"Article 134756"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125004806","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Spray characteristics are among the variables that have a direct impact on both engine performance and engine design, thus significantly affecting the ignition and emission parameters of diesel engines. This study combines experimental methods and computational fluid dynamics simulations to comprehensively investigate spray characteristics. A constant volume chamber replicating diesel engine conditions is utilized to assess the impact of incorporating absolute ethanol in diesel blends. MATLAB image processing techniques are employed to analyze the spray development images captured using a high-speed camera with the shadowgraph optical method. Macroscopic spray features, including spray penetration length, cone angle, and spray area are studied experimentally, while simulations explore microscopic features like Sauter mean diameter. The experimental matrix varies the absolute ethanol content (10%, 20%, 30%) in the blends and the injection strategies. Results reveal that ethanol addition alters the fuel’s physicochemical properties, reducing density, viscosity, and surface tension, leading to shorter penetration and broader cone angle. Blends with lower viscosity and surface tension exhibit larger cone angles, while higher-density blends boost penetration. Increasing ethanol concentration further reduces droplet size, indicating enhanced spray breakup and atomization processes. Moreover, the spray characteristics are also influenced by injection parameters highlighting the importance of an optimized injection strategy in spray development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信