Classification and predictive leaching risk assessment of construction and demolition waste using multivariate statistical and machine learning analyses

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Andrea Bisciotti , Valentina Brombin , Yu Song , Gianluca Bianchini , Giuseppe Cruciani
{"title":"Classification and predictive leaching risk assessment of construction and demolition waste using multivariate statistical and machine learning analyses","authors":"Andrea Bisciotti ,&nbsp;Valentina Brombin ,&nbsp;Yu Song ,&nbsp;Gianluca Bianchini ,&nbsp;Giuseppe Cruciani","doi":"10.1016/j.wasman.2025.02.033","DOIUrl":null,"url":null,"abstract":"<div><div>Managing construction and demolition waste (CDW) poses serious concerns regarding landfilling and recycling because of the potential release of hazardous elements after leaching. Ceramic materials such as bricks, tiles, and porcelain account for more than 70% of CDW. Fourteen samples of different CDW products from Ferrara (Northeast Italy) were subjected to geochemical analyses, including leaching tests, in accordance with UNI EN 12457–2. The interaction between ceramics and concrete was examined, highlighting the influence of mixed environments on the leaching behavior. Results were compared with an extensive database of more than 150 samples collected from the literature on different CDW types worldwide. Multivariate statistical analysis and machine learning were used to classify the CDW compositions based on the bulk chemical data. Various metrics—contaminant factors (C<sub>f</sub> and C<sub>d</sub>) and hazardous quotients (HQ and HQ<sub>m</sub>)—were introduced to quantify the key environmental hazards of leachates. The results of this study underscore the potential of the proposed approaches in automating CDW classification and predicting C<sub>f</sub> and HQ using only the starting bulk chemical composition. The findings enhance CDW management practices and support sustainability efforts in the construction industry.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"196 ","pages":"Pages 60-70"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25000881","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Managing construction and demolition waste (CDW) poses serious concerns regarding landfilling and recycling because of the potential release of hazardous elements after leaching. Ceramic materials such as bricks, tiles, and porcelain account for more than 70% of CDW. Fourteen samples of different CDW products from Ferrara (Northeast Italy) were subjected to geochemical analyses, including leaching tests, in accordance with UNI EN 12457–2. The interaction between ceramics and concrete was examined, highlighting the influence of mixed environments on the leaching behavior. Results were compared with an extensive database of more than 150 samples collected from the literature on different CDW types worldwide. Multivariate statistical analysis and machine learning were used to classify the CDW compositions based on the bulk chemical data. Various metrics—contaminant factors (Cf and Cd) and hazardous quotients (HQ and HQm)—were introduced to quantify the key environmental hazards of leachates. The results of this study underscore the potential of the proposed approaches in automating CDW classification and predicting Cf and HQ using only the starting bulk chemical composition. The findings enhance CDW management practices and support sustainability efforts in the construction industry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信