The Deg5 and Deg8 thylakoid lumenal proteases are dispensable for photosynthesis and fruit ripening in Solanum lycopersicum

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Eba Abraham Itafa , Vivekanand Tiwari , Maya Cohen , Itzhak Kamara , Preetom Regon , Yana Butenko , Alon Savidor , Zach Adam , Dana Charuvi
{"title":"The Deg5 and Deg8 thylakoid lumenal proteases are dispensable for photosynthesis and fruit ripening in Solanum lycopersicum","authors":"Eba Abraham Itafa ,&nbsp;Vivekanand Tiwari ,&nbsp;Maya Cohen ,&nbsp;Itzhak Kamara ,&nbsp;Preetom Regon ,&nbsp;Yana Butenko ,&nbsp;Alon Savidor ,&nbsp;Zach Adam ,&nbsp;Dana Charuvi","doi":"10.1016/j.plaphy.2025.109657","DOIUrl":null,"url":null,"abstract":"<div><div>‘Deg’ is a family of soluble ATP-independent serine proteases, with plant Deg1, Deg5 and Deg8 localized to the chloroplast thylakoid lumen. These three proteases have been mostly studied with regard to the repair of damaged photosystem II (PSII) complexes during photoinhibition. The requirement of Deg5 and Deg8, proposed to work together as a heterohexamer, to PSII repair in Arabidopsis is debated. This, together with our interest in exploring the involvement of chloroplast proteases in the chloroplast-to-chromoplast transition, during which the thylakoid network is dismantled, prompted us to study the lumenal Deg proteases in tomato (<em>Solanum lycoperiscum</em>) plants. Toward this, we generated tomato knockout plants and focused on leaf photosynthesis and on fruit development and ripening. Lack of SlDeg1 resulted in chlorotic leaves and considerably impaired plant growth. On the other hand, mutants lacking both SlDeg5 and SlDeg8 were very similar to WT plants, and had neither impaired nor enhanced photosynthetic performance at different controlled or variable conditions. Monitoring fruit development and ripening, as well as fruit characteristics and plant yield showed that they were not affected in <em>sldeg5/8</em> mutants. We thus propose that SlDeg5 and SlDeg8 are not essential for photosynthesis and fruit ripening in tomato plants.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"221 ","pages":"Article 109657"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825001858","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

‘Deg’ is a family of soluble ATP-independent serine proteases, with plant Deg1, Deg5 and Deg8 localized to the chloroplast thylakoid lumen. These three proteases have been mostly studied with regard to the repair of damaged photosystem II (PSII) complexes during photoinhibition. The requirement of Deg5 and Deg8, proposed to work together as a heterohexamer, to PSII repair in Arabidopsis is debated. This, together with our interest in exploring the involvement of chloroplast proteases in the chloroplast-to-chromoplast transition, during which the thylakoid network is dismantled, prompted us to study the lumenal Deg proteases in tomato (Solanum lycoperiscum) plants. Toward this, we generated tomato knockout plants and focused on leaf photosynthesis and on fruit development and ripening. Lack of SlDeg1 resulted in chlorotic leaves and considerably impaired plant growth. On the other hand, mutants lacking both SlDeg5 and SlDeg8 were very similar to WT plants, and had neither impaired nor enhanced photosynthetic performance at different controlled or variable conditions. Monitoring fruit development and ripening, as well as fruit characteristics and plant yield showed that they were not affected in sldeg5/8 mutants. We thus propose that SlDeg5 and SlDeg8 are not essential for photosynthesis and fruit ripening in tomato plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信