Graft copolymerization synthesis of chitosan-polyferric sulfate composite coagulant to improve biogas slurry treatment toward effective irrigation

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Ruohan Xia , Wancen Liu , Long D. Nghiem , Dingge Cao , Guoxue Li , Wenhai Luo
{"title":"Graft copolymerization synthesis of chitosan-polyferric sulfate composite coagulant to improve biogas slurry treatment toward effective irrigation","authors":"Ruohan Xia ,&nbsp;Wancen Liu ,&nbsp;Long D. Nghiem ,&nbsp;Dingge Cao ,&nbsp;Guoxue Li ,&nbsp;Wenhai Luo","doi":"10.1016/j.jenvman.2025.124563","DOIUrl":null,"url":null,"abstract":"<div><div>Biogas slurry from anaerobic digestion of organic wastes can be a potential biofertilizer for agricultural irrigation, which however, is challenged by suspended solids and contaminants. Thus, this study synthesized a composite coagulant and optimized its performance to advance biogas slurry treatment. A natural-synthetic polymer, chitosan (CTS), was modified by 2-methacryloxyethyltrimethyl ammonium chloride (DMC) via graft copolymerization and then combined with polyferric sulfate (PFS) to formulate the composite CTS-g(DMC)-PFS coagulant. Results show that CTS-g(DMC)-PFS exhibited stronger electrical neutralization and adsorption bridging to destabilize and aggregate colloidal particles, thus, exhibiting higher removal of suspended solids, heavy metals, and antibiotics over individual and pristine coagulants. Graft copolymerization of CTS with DMC at the mass ratio of 1:9 maximized its water solubility. Further blending this mixture with PFS at the mass ratio of 1:2 effectively improved the coagulation of biogas slurry, particularly for the removal of antibiotics and heavy metals (e.g. enrofloxacin and Cu). Moreover, CTS-g(DMC)-PFS produced dense and compact flocs for effective sedimentation. Detailed characterization attributed such improvement to the hydrolysis of cationic quaternary ammonium groups on grafted monomers and further coordinative effects between CTS-g(DMC) and Fe to enhance molecular chains and positive charges in CTS-g(DMC)-PFS to facilitate particle aggregation, contaminant adsorption, and then floc sedimentation.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"377 ","pages":"Article 124563"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725005390","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biogas slurry from anaerobic digestion of organic wastes can be a potential biofertilizer for agricultural irrigation, which however, is challenged by suspended solids and contaminants. Thus, this study synthesized a composite coagulant and optimized its performance to advance biogas slurry treatment. A natural-synthetic polymer, chitosan (CTS), was modified by 2-methacryloxyethyltrimethyl ammonium chloride (DMC) via graft copolymerization and then combined with polyferric sulfate (PFS) to formulate the composite CTS-g(DMC)-PFS coagulant. Results show that CTS-g(DMC)-PFS exhibited stronger electrical neutralization and adsorption bridging to destabilize and aggregate colloidal particles, thus, exhibiting higher removal of suspended solids, heavy metals, and antibiotics over individual and pristine coagulants. Graft copolymerization of CTS with DMC at the mass ratio of 1:9 maximized its water solubility. Further blending this mixture with PFS at the mass ratio of 1:2 effectively improved the coagulation of biogas slurry, particularly for the removal of antibiotics and heavy metals (e.g. enrofloxacin and Cu). Moreover, CTS-g(DMC)-PFS produced dense and compact flocs for effective sedimentation. Detailed characterization attributed such improvement to the hydrolysis of cationic quaternary ammonium groups on grafted monomers and further coordinative effects between CTS-g(DMC) and Fe to enhance molecular chains and positive charges in CTS-g(DMC)-PFS to facilitate particle aggregation, contaminant adsorption, and then floc sedimentation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信