Kaitlyn M. Marino , Daniel C. Shippy , Tyler K. Ulland
{"title":"Sugar utilization by microglia in Alzheimer's disease","authors":"Kaitlyn M. Marino , Daniel C. Shippy , Tyler K. Ulland","doi":"10.1016/j.jneuroim.2025.578552","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes is a major risk factor for Alzheimer's disease (AD), yet the effect of specific carbohydrate sources in the diet on AD pathology remains unclear. The primary neuroimmune cell, microglia, undergo a metabolic shift during neuroinflammation associated with AD pathology. We utilized existing gene expression data and identified changes in sugar transporters (increased <em>Slc2a1</em> (glucose) and decreased <em>Slc2a5</em> (fructose) expression). To examine gene expression with respect to primary sugar source, N9 cells, a mouse microglia cell line, were cultured in glucose or fructose supplemented media and stimulated with lipopolysaccharide (LPS). RNA-sequencing analyses indicated significant changes between control and sugar supplemented media and several differentially expressed genes between glucose and fructose media. Concurrently, 5XFAD mice received equicaloric diets with specific carbohydrate sources: dextrose or fructose. Regardless of diet, sex, or genotype, all mice developed high blood sugar levels; confocal microscopy analyses indicated similar amyloid plaque burden and microglial response relative to the control diet, but there was a change in the microglial response between dextrose and fructose fed mice. Overall, these data indicate microglia preferentially express sugar transporters and sugar source may influence microglial reactivity in response to plaque pathology.</div></div>","PeriodicalId":16671,"journal":{"name":"Journal of neuroimmunology","volume":"401 ","pages":"Article 578552"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165572825000323","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes is a major risk factor for Alzheimer's disease (AD), yet the effect of specific carbohydrate sources in the diet on AD pathology remains unclear. The primary neuroimmune cell, microglia, undergo a metabolic shift during neuroinflammation associated with AD pathology. We utilized existing gene expression data and identified changes in sugar transporters (increased Slc2a1 (glucose) and decreased Slc2a5 (fructose) expression). To examine gene expression with respect to primary sugar source, N9 cells, a mouse microglia cell line, were cultured in glucose or fructose supplemented media and stimulated with lipopolysaccharide (LPS). RNA-sequencing analyses indicated significant changes between control and sugar supplemented media and several differentially expressed genes between glucose and fructose media. Concurrently, 5XFAD mice received equicaloric diets with specific carbohydrate sources: dextrose or fructose. Regardless of diet, sex, or genotype, all mice developed high blood sugar levels; confocal microscopy analyses indicated similar amyloid plaque burden and microglial response relative to the control diet, but there was a change in the microglial response between dextrose and fructose fed mice. Overall, these data indicate microglia preferentially express sugar transporters and sugar source may influence microglial reactivity in response to plaque pathology.
期刊介绍:
The Journal of Neuroimmunology affords a forum for the publication of works applying immunologic methodology to the furtherance of the neurological sciences. Studies on all branches of the neurosciences, particularly fundamental and applied neurobiology, neurology, neuropathology, neurochemistry, neurovirology, neuroendocrinology, neuromuscular research, neuropharmacology and psychology, which involve either immunologic methodology (e.g. immunocytochemistry) or fundamental immunology (e.g. antibody and lymphocyte assays), are considered for publication.