Polystyrene microplastics trigger colonic inflammation in rats via the TLR4/NF-κB/COX-2 pathway and modulation of intestinal microbiota

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Xuemin Feng , Meng Zhang , Tianyang Zhao , Jianwei Cui , Hui Ye , Chunkui Zhou , Lin Ye , Liting Zhou
{"title":"Polystyrene microplastics trigger colonic inflammation in rats via the TLR4/NF-κB/COX-2 pathway and modulation of intestinal microbiota","authors":"Xuemin Feng ,&nbsp;Meng Zhang ,&nbsp;Tianyang Zhao ,&nbsp;Jianwei Cui ,&nbsp;Hui Ye ,&nbsp;Chunkui Zhou ,&nbsp;Lin Ye ,&nbsp;Liting Zhou","doi":"10.1016/j.tox.2025.154090","DOIUrl":null,"url":null,"abstract":"<div><div>Polystyrene microplastics (PS-MPs) are common microplastics that pose significant health hazards to humans. Due to multifunctionality in the gut system, MP-associated damage and mechanisms require further exploration. This study was undertaken with the objective of elucidating the impact of PS-MP exposure on colonic inflammation in rats, and to explore its potential mechanisms. Forty-eight specific-pathogen-free Wistar male rats were administered 0, 0.5, 5, and 50 mg/kg/d of PS-MPs for 90 days, after which intestinal flora distribution, inflammatory factor levels in the colon, and <em>TLR4/NF-κB/COX-2</em> gene levels were examined. To clarify whether PS-MPs directly infiltrate intestinal epithelial cells and induce cytotoxicity, human intestinal epithelial cells (HIECs) were exposed to a range of PS-MP concentrations (0 ∼ 100 μg/mL) for 48 h, and CCK-8 assays were conducted to assess the cell survival rates. In the colon tissue of rats exposed to PS-MP, goblet cells decreased, muscular layer arrangements were disordered, and disrupted and discontinuous crypt structures appeared in colon tissue, while high numbers of inflammatory cells infiltrated the colonic mucosa and submucosa. PS-MPs could accumulate in HIECs, and cell survival rates were decreased. In the colons of rats exposed to PS-MPs, the levels of Interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were found to be elevated. Additionally, the mRNA and protein levels of TLR4/MyD88 in the colons of PS-MP-exposed rats exhibited a significant increase. Furthermore, the TLR4/NF-κB/COX-2 signaling pathway in rat colons was activated after MP exposure. When the TLR4/NF-κB/COX-2 signaling pathway was inhibited, the significant increases in IL-6 and TNF-α levels caused by PS-MPs were significantly reversed. PS-MP exposure also altered intestinal flora abundance in rats. Compared with the control group, the proportion of Firmicutes, Proteobacteria and Actinobacteria in PS-MPs exposed group was increased. In contrast, the proportion of Bacteroidetes and Verrucomicrobia decreased. Taken together, our results suggest that PS-MP could exert adverse effects on the gastrointestinal health of rats. Pro-inflammatory cytokine (IL-6, IL-1β and TNF-α) levels increased, and the TLR4/NF-κB/COX-2 signaling pathway was triggered. Thus, flora changes and increased intestinal inflammation may interact with each other.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"513 ","pages":"Article 154090"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X25000460","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Polystyrene microplastics (PS-MPs) are common microplastics that pose significant health hazards to humans. Due to multifunctionality in the gut system, MP-associated damage and mechanisms require further exploration. This study was undertaken with the objective of elucidating the impact of PS-MP exposure on colonic inflammation in rats, and to explore its potential mechanisms. Forty-eight specific-pathogen-free Wistar male rats were administered 0, 0.5, 5, and 50 mg/kg/d of PS-MPs for 90 days, after which intestinal flora distribution, inflammatory factor levels in the colon, and TLR4/NF-κB/COX-2 gene levels were examined. To clarify whether PS-MPs directly infiltrate intestinal epithelial cells and induce cytotoxicity, human intestinal epithelial cells (HIECs) were exposed to a range of PS-MP concentrations (0 ∼ 100 μg/mL) for 48 h, and CCK-8 assays were conducted to assess the cell survival rates. In the colon tissue of rats exposed to PS-MP, goblet cells decreased, muscular layer arrangements were disordered, and disrupted and discontinuous crypt structures appeared in colon tissue, while high numbers of inflammatory cells infiltrated the colonic mucosa and submucosa. PS-MPs could accumulate in HIECs, and cell survival rates were decreased. In the colons of rats exposed to PS-MPs, the levels of Interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were found to be elevated. Additionally, the mRNA and protein levels of TLR4/MyD88 in the colons of PS-MP-exposed rats exhibited a significant increase. Furthermore, the TLR4/NF-κB/COX-2 signaling pathway in rat colons was activated after MP exposure. When the TLR4/NF-κB/COX-2 signaling pathway was inhibited, the significant increases in IL-6 and TNF-α levels caused by PS-MPs were significantly reversed. PS-MP exposure also altered intestinal flora abundance in rats. Compared with the control group, the proportion of Firmicutes, Proteobacteria and Actinobacteria in PS-MPs exposed group was increased. In contrast, the proportion of Bacteroidetes and Verrucomicrobia decreased. Taken together, our results suggest that PS-MP could exert adverse effects on the gastrointestinal health of rats. Pro-inflammatory cytokine (IL-6, IL-1β and TNF-α) levels increased, and the TLR4/NF-κB/COX-2 signaling pathway was triggered. Thus, flora changes and increased intestinal inflammation may interact with each other.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信