Interfacial adhesion between dissimilar thermoplastics fabricated via material extrusion-based multi-material additive manufacturing

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Felix Richter, Dazhong Wu
{"title":"Interfacial adhesion between dissimilar thermoplastics fabricated via material extrusion-based multi-material additive manufacturing","authors":"Felix Richter,&nbsp;Dazhong Wu","doi":"10.1016/j.matdes.2025.113688","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-material additive manufacturing (MMAM) enables the design of materials with tunable mechanical performance by fabricating multiple dissimilar materials in a single print. MMAM has been utilized to fabricate components with unique mechanical properties for applications such as damage detection, medical devices, sensors, and soft robotics. However, the bonding strength between dissimilar polymeric materials strongly depends on the material combination and is typically lower than the material strength of the constituents. This study investigates the interfacial adhesion between two thermoplastics fabricated via material extrusion (ME)-based MMAM by quantifying the interface bonding strength using mechanical tests and polymer adhesion theory-based correlation analysis. Experimental results showed that the polylactic acid (PLA)-polyethylene terephthalate glycol (PETG), PETG-polycarbonate (PC) and PLA-PC material combinations exhibit bonding strengths that are close to or exceed their constituent’s material strength. Material combinations that include polypropylene (PP) and polyethylene (PE) exhibited bonding strengths of nearly two magnitudes lower than those of PLA-PETG, PETG-PC, and PLA-PC. The microstructural images of the samples showed that the most compatible combinations exhibited a smooth, gradient interface indicating the importance of nano-scale adhesion mechanisms. Based on Hansen solubility parameters and the coefficient of thermal expansion (CTE), we observed the correlation between wettability and physical adsorption, intermolecular diffusion, thermal stress, and the interface bonding strength. The wettability and physical adsorption feature extracted from the solubility parameters showed the highest correlation with the interface bonding strength. Furthermore, we observed that the smaller the difference in solubility parameters and CTE between two thermoplastics fabricated via ME, the more compatible the two thermoplastics are.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113688"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026412752500108X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-material additive manufacturing (MMAM) enables the design of materials with tunable mechanical performance by fabricating multiple dissimilar materials in a single print. MMAM has been utilized to fabricate components with unique mechanical properties for applications such as damage detection, medical devices, sensors, and soft robotics. However, the bonding strength between dissimilar polymeric materials strongly depends on the material combination and is typically lower than the material strength of the constituents. This study investigates the interfacial adhesion between two thermoplastics fabricated via material extrusion (ME)-based MMAM by quantifying the interface bonding strength using mechanical tests and polymer adhesion theory-based correlation analysis. Experimental results showed that the polylactic acid (PLA)-polyethylene terephthalate glycol (PETG), PETG-polycarbonate (PC) and PLA-PC material combinations exhibit bonding strengths that are close to or exceed their constituent’s material strength. Material combinations that include polypropylene (PP) and polyethylene (PE) exhibited bonding strengths of nearly two magnitudes lower than those of PLA-PETG, PETG-PC, and PLA-PC. The microstructural images of the samples showed that the most compatible combinations exhibited a smooth, gradient interface indicating the importance of nano-scale adhesion mechanisms. Based on Hansen solubility parameters and the coefficient of thermal expansion (CTE), we observed the correlation between wettability and physical adsorption, intermolecular diffusion, thermal stress, and the interface bonding strength. The wettability and physical adsorption feature extracted from the solubility parameters showed the highest correlation with the interface bonding strength. Furthermore, we observed that the smaller the difference in solubility parameters and CTE between two thermoplastics fabricated via ME, the more compatible the two thermoplastics are.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信