Binocular vision-based guidance for robotic assembly of prefabricated components

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Chenyu Liu , Jing Wu , Yunfan Gu , Luqi Xie , Gang Wu
{"title":"Binocular vision-based guidance for robotic assembly of prefabricated components","authors":"Chenyu Liu ,&nbsp;Jing Wu ,&nbsp;Yunfan Gu ,&nbsp;Luqi Xie ,&nbsp;Gang Wu","doi":"10.1016/j.autcon.2025.106065","DOIUrl":null,"url":null,"abstract":"<div><div>A robot-assisted installation method, which uses a crane to bear the component's weight and two robots to control the lifted component for precise horizontal positioning, was proposed in a previous study. To enhance the capability to operate large prefabricated components, this paper designs a binocular vision-based technique for real-time localization of the end-tool during the component-pushing process. Each robot is continuously commanded to rotate and translate the end tool based on the measured difference between its current and target poses, until this difference is within an acceptable threshold. The principles and implementation details of the visual method are described in this paper. Even if the robot deforms or slips, accurate measurement and adjustment of the end tool's pose allow effective pushing of the component to the target area. Test results demonstrate that the binocular vision guidance technology is feasible and effective, improving the flexibility and practicability of the installation-assisted robot.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"172 ","pages":"Article 106065"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001050","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A robot-assisted installation method, which uses a crane to bear the component's weight and two robots to control the lifted component for precise horizontal positioning, was proposed in a previous study. To enhance the capability to operate large prefabricated components, this paper designs a binocular vision-based technique for real-time localization of the end-tool during the component-pushing process. Each robot is continuously commanded to rotate and translate the end tool based on the measured difference between its current and target poses, until this difference is within an acceptable threshold. The principles and implementation details of the visual method are described in this paper. Even if the robot deforms or slips, accurate measurement and adjustment of the end tool's pose allow effective pushing of the component to the target area. Test results demonstrate that the binocular vision guidance technology is feasible and effective, improving the flexibility and practicability of the installation-assisted robot.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信