Fabrication of bifunctional counter electrode materials for quantum dot sensitized solar cells by using rGO/1T-MoS2 nano composite

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Bayisa Batu Kasaye, Megersa Wodajo Shura, Solomon Tiruneh Dibaba
{"title":"Fabrication of bifunctional counter electrode materials for quantum dot sensitized solar cells by using rGO/1T-MoS2 nano composite","authors":"Bayisa Batu Kasaye,&nbsp;Megersa Wodajo Shura,&nbsp;Solomon Tiruneh Dibaba","doi":"10.1016/j.micrna.2025.208099","DOIUrl":null,"url":null,"abstract":"<div><div>The metallic molybdenum disulfide (1T-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) has recently been recognized as a promising counter electrode (CE) material for quantum dot-sensitized solar cells (QDSSCs). However, its poor structural stability has limited its broader application. Herein to address this challenge, diatomic selenium (Se) and nickel (Ni) were doped into MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> to facilitate the phase conversion of 2H-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> to 1T-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. This doped material was then integrated with reduced graphene oxide (rGO) via a hydrothermal method to develop a bifunctional Ni-Se-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/rGO CE material for QDSSCs. The nanocomposite was characterized using XRD, SEM, FTIR, UV–vis spectroscopy, and electrochemical techniques, confirming the successful formation of the rGO/1T-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> nanostructure. SEM images revealed Ni-Se-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> loosely packed onto rGO sheets, and the XRD pattern confirmed the presence of the 1T-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/rGO composite. Electrochemical impedance spectroscopy and cyclic voltammetry demonstrated excellent electrochemical properties, including a low charge transfer resistance (8.52 <span><math><mi>Ω</mi></math></span>) and a high electrochemical surface area. Tauc plot analysis showed a reduced bandgap of 1.8 eV for Ni-Se-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/rGO compared to 2.0 eV for Ni-Se-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. These improvements significantly enhance electron lifetime, charge transfer, and charge separation, resulting in superior overall performance of QDSSCs. This study highlights Ni-Se-MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/rGO as a highly efficient and stable photovoltaic CE material for QDSSCs.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"201 ","pages":"Article 208099"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The metallic molybdenum disulfide (1T-MoS2) has recently been recognized as a promising counter electrode (CE) material for quantum dot-sensitized solar cells (QDSSCs). However, its poor structural stability has limited its broader application. Herein to address this challenge, diatomic selenium (Se) and nickel (Ni) were doped into MoS2 to facilitate the phase conversion of 2H-MoS2 to 1T-MoS2. This doped material was then integrated with reduced graphene oxide (rGO) via a hydrothermal method to develop a bifunctional Ni-Se-MoS2/rGO CE material for QDSSCs. The nanocomposite was characterized using XRD, SEM, FTIR, UV–vis spectroscopy, and electrochemical techniques, confirming the successful formation of the rGO/1T-MoS2 nanostructure. SEM images revealed Ni-Se-MoS2 loosely packed onto rGO sheets, and the XRD pattern confirmed the presence of the 1T-MoS2/rGO composite. Electrochemical impedance spectroscopy and cyclic voltammetry demonstrated excellent electrochemical properties, including a low charge transfer resistance (8.52 Ω) and a high electrochemical surface area. Tauc plot analysis showed a reduced bandgap of 1.8 eV for Ni-Se-MoS2/rGO compared to 2.0 eV for Ni-Se-MoS2. These improvements significantly enhance electron lifetime, charge transfer, and charge separation, resulting in superior overall performance of QDSSCs. This study highlights Ni-Se-MoS2/rGO as a highly efficient and stable photovoltaic CE material for QDSSCs.
rGO/1T-MoS2纳米复合材料制备量子点敏化太阳能电池双功能对电极材料
金属二硫化钼(1T-MoS2)近年来被认为是一种很有前途的量子点敏化太阳能电池(QDSSCs)对电极材料。但其结构稳定性差,限制了其广泛应用。为了解决这一挑战,将双原子硒(Se)和镍(Ni)掺杂到MoS2中,以促进2H-MoS2向1T-MoS2的相变。然后通过水热法将该掺杂材料与还原氧化石墨烯(rGO)集成,开发出用于QDSSCs的双功能Ni-Se-MoS2/rGO CE材料。采用XRD、SEM、FTIR、UV-vis光谱和电化学技术对复合材料进行了表征,证实了rGO/1T-MoS2纳米结构的成功形成。SEM图像显示Ni-Se-MoS2松散地包裹在rGO薄片上,XRD图证实了1T-MoS2/rGO复合材料的存在。电化学阻抗谱和循环伏安法显示了优异的电化学性能,包括低电荷转移电阻(8.52 Ω)和高电化学表面积。tac图分析显示,与Ni-Se-MoS2的2.0 eV相比,Ni-Se-MoS2/rGO的带隙减少了1.8 eV。这些改进显著提高了电子寿命、电荷转移和电荷分离,从而使QDSSCs的整体性能优越。本研究强调Ni-Se-MoS2/rGO是一种高效稳定的QDSSCs光伏CE材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信