Practical scan-length considerations for mapping upper limb movements to the somatosensory/motor cortex at 7T: A pilot study

Q4 Neuroscience
D. Rangaprakash , Olivia E. Rowe , Hyungeun Song , Samantha Gutierrez-Arango , Julianna Gerold , Erica A. Israel , Michael F. Fernandez , Matthew J. Carty , Hugh M. Herr , Robert L. Barry
{"title":"Practical scan-length considerations for mapping upper limb movements to the somatosensory/motor cortex at 7T: A pilot study","authors":"D. Rangaprakash ,&nbsp;Olivia E. Rowe ,&nbsp;Hyungeun Song ,&nbsp;Samantha Gutierrez-Arango ,&nbsp;Julianna Gerold ,&nbsp;Erica A. Israel ,&nbsp;Michael F. Fernandez ,&nbsp;Matthew J. Carty ,&nbsp;Hugh M. Herr ,&nbsp;Robert L. Barry","doi":"10.1016/j.ynirp.2025.100240","DOIUrl":null,"url":null,"abstract":"<div><div>The relationship between motor cortex (M1) and upper limb movements has been investigated extensively using functional MRI (fMRI). While most research has focused on applications, very few studies have focused on practical aspects of developing the fMRI protocol. Thus, the effect of scan length on M1 activations during various upper limb movements remains unclear. Scan length constraints are important for conducting motor experiments within a 60- or 90-minute scan session. We targeted this gap in the literature in this pilot study by investigating 7T fMRI activations in a male participant while performing eight different upper limb movements (of the fingers, wrist, and elbow) across 16 task runs (8 with the left arm, 8 with the right arm, 88 minutes total fMRI duration). Standard activation analyses were performed (<em>Z</em> &gt; 3.1, <em>p</em> &lt; 0.01, cluster thresholded) independently for 14 different cases (2 runs through 8 runs, left and right arm) and subsequently compared. We found diminishing returns, presented as activations gradually plateauing, with higher number of runs. We observed two broad categories of movements, one with generally higher activation (more activated voxels and higher Z-stats) and the other with lower activation. To achieve similar statistical power, movements with lower activation required longer scanning (more runs). Based on these observations, we propose a ‘<em>one size does not fit all</em>’ practical protocol within a 60-, 75-, or 90- minute scan session, wherein different numbers of runs are assigned for different movements. We validated the 75-minute protocol using seven separate scans (N = 3). Our study could benefit researchers who are designing upper limb fMRI experiments.</div></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"5 1","pages":"Article 100240"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695602500008X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

The relationship between motor cortex (M1) and upper limb movements has been investigated extensively using functional MRI (fMRI). While most research has focused on applications, very few studies have focused on practical aspects of developing the fMRI protocol. Thus, the effect of scan length on M1 activations during various upper limb movements remains unclear. Scan length constraints are important for conducting motor experiments within a 60- or 90-minute scan session. We targeted this gap in the literature in this pilot study by investigating 7T fMRI activations in a male participant while performing eight different upper limb movements (of the fingers, wrist, and elbow) across 16 task runs (8 with the left arm, 8 with the right arm, 88 minutes total fMRI duration). Standard activation analyses were performed (Z > 3.1, p < 0.01, cluster thresholded) independently for 14 different cases (2 runs through 8 runs, left and right arm) and subsequently compared. We found diminishing returns, presented as activations gradually plateauing, with higher number of runs. We observed two broad categories of movements, one with generally higher activation (more activated voxels and higher Z-stats) and the other with lower activation. To achieve similar statistical power, movements with lower activation required longer scanning (more runs). Based on these observations, we propose a ‘one size does not fit all’ practical protocol within a 60-, 75-, or 90- minute scan session, wherein different numbers of runs are assigned for different movements. We validated the 75-minute protocol using seven separate scans (N = 3). Our study could benefit researchers who are designing upper limb fMRI experiments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信