BRAVE: Benefit-aware data offloading in UAV edge computing using multi-agent reinforcement learning

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Odyssefs Diamantopoulos Pantaleon, Aisha B Rahman, Eirini Eleni Tsiropoulou
{"title":"BRAVE: Benefit-aware data offloading in UAV edge computing using multi-agent reinforcement learning","authors":"Odyssefs Diamantopoulos Pantaleon,&nbsp;Aisha B Rahman,&nbsp;Eirini Eleni Tsiropoulou","doi":"10.1016/j.simpat.2025.103091","DOIUrl":null,"url":null,"abstract":"<div><div>Edge computing has emerged as a transformative technology in public safety and has the potential to support the rapid data processing and real-time decision-making during critical events. This paper introduces the BRAVE framework, a cutting-edge solution where the UAVs act as Mobile Edge Computing (MEC) servers, addressing users’ computational demands across disaster-stricken areas. An accurate UAV energy consumption model is introduced, including the UAV’s travel, processing, and hover energy. BRAVE accounts for both the users’ Quality of Service (QoS) requirements, such as latency and energy constraints, and UAV energy limitations in order to determine the UAVs’ optimal path planning. The BRAVE framework consists of a two-level decision-making mechanism: a submodular game-based model ensuring the users’ optimal data offloading strategies, with provable Pure Nash Equilibrium properties, and a reinforcement learning-driven UAV path planning mechanism maximizing the data collection efficiency. Furthermore, the framework extends to collaborative multi-agent reinforcement learning (BRAVE-MARL), enabling the UAVs’ coordination for enhanced service delivery. Extensive experiments validate the BRAVE framework’s adaptability and effectiveness and provide tailored solutions for diverse public safety scenarios.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"140 ","pages":"Article 103091"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25000267","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Edge computing has emerged as a transformative technology in public safety and has the potential to support the rapid data processing and real-time decision-making during critical events. This paper introduces the BRAVE framework, a cutting-edge solution where the UAVs act as Mobile Edge Computing (MEC) servers, addressing users’ computational demands across disaster-stricken areas. An accurate UAV energy consumption model is introduced, including the UAV’s travel, processing, and hover energy. BRAVE accounts for both the users’ Quality of Service (QoS) requirements, such as latency and energy constraints, and UAV energy limitations in order to determine the UAVs’ optimal path planning. The BRAVE framework consists of a two-level decision-making mechanism: a submodular game-based model ensuring the users’ optimal data offloading strategies, with provable Pure Nash Equilibrium properties, and a reinforcement learning-driven UAV path planning mechanism maximizing the data collection efficiency. Furthermore, the framework extends to collaborative multi-agent reinforcement learning (BRAVE-MARL), enabling the UAVs’ coordination for enhanced service delivery. Extensive experiments validate the BRAVE framework’s adaptability and effectiveness and provide tailored solutions for diverse public safety scenarios.
BRAVE:使用多智能体强化学习的无人机边缘计算中的利益感知数据卸载
边缘计算已经成为公共安全领域的一项变革性技术,并有可能在关键事件期间支持快速数据处理和实时决策。本文介绍了BRAVE框架,这是一种先进的解决方案,其中无人机充当移动边缘计算(MEC)服务器,解决了灾区用户的计算需求。介绍了一种精确的无人机能耗模型,包括无人机的飞行能量、加工能量和悬停能量。BRAVE考虑了用户的服务质量(QoS)需求,如延迟和能量约束,以及无人机的能量限制,以确定无人机的最优路径规划。BRAVE框架由两层决策机制组成:一是基于子模块的博弈模型,确保用户的最优数据卸载策略,具有可证明的纯纳什均衡性质;二是强化学习驱动的无人机路径规划机制,最大限度地提高数据收集效率。此外,该框架扩展到协作多智能体强化学习(BRAVE-MARL),使无人机能够协调增强服务交付。大量的实验验证了BRAVE框架的适应性和有效性,并为各种公共安全场景提供了量身定制的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信