Sandwich-like composite membrane for advanced radiative cooling applications

Wuyi Liu , Qing Tian , Yuyi Wang , Liu Yang , Dan Lu , Zhikan Yao , Lin Zhang
{"title":"Sandwich-like composite membrane for advanced radiative cooling applications","authors":"Wuyi Liu ,&nbsp;Qing Tian ,&nbsp;Yuyi Wang ,&nbsp;Liu Yang ,&nbsp;Dan Lu ,&nbsp;Zhikan Yao ,&nbsp;Lin Zhang","doi":"10.1016/j.advmem.2025.100133","DOIUrl":null,"url":null,"abstract":"<div><div>Passive daytime radiative cooling (PDRC) offers an energy-efficient method of cooling by reflecting sunlight and emitting heat to the cold outer space through the atmospheric transparent window (ATW). For optimal performance, radiative coolers require high reflectance in the solar spectrum to minimize solar heat absorption and near-unity emissivity in the ATW to maximize heat dissipation. Here, we present a scalable composite radiative cooling membrane (cRCM) composed of a hierarchically porous polysulfone (PSF) layer, sandwiched between two flexible polydimethyl-siloxane (PDMS) layers. The PSF layer, fabricated using a simple non-solvent induced phase separation (NIPS) method, exhibits a high solar reflectance of 98.2 ​% across wavelengths of 0.3–2.5 ​μm owing to its high refractive index of 1.64. The PDMS layers, attached on both sides of the PSF membrane via roll-to-roll lamination, offer excellent mid-infrared (MIR) emissivity of 94.2 ​% across wavelengths of 2.5–20 ​μm. Under midday conditions, the membrane achieves an average temperature reduction of 5.0 ​°C below ambient air temperature, with a theoretical cooling power of 114 ​W/m<sup>2</sup>. Year-round simulations indicate significant cooling energy saving in warm and tropical regions. The new membrane represents a significant advance in PDRC technology, offering promising applications in energy-efficient cooling systems.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100133"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Passive daytime radiative cooling (PDRC) offers an energy-efficient method of cooling by reflecting sunlight and emitting heat to the cold outer space through the atmospheric transparent window (ATW). For optimal performance, radiative coolers require high reflectance in the solar spectrum to minimize solar heat absorption and near-unity emissivity in the ATW to maximize heat dissipation. Here, we present a scalable composite radiative cooling membrane (cRCM) composed of a hierarchically porous polysulfone (PSF) layer, sandwiched between two flexible polydimethyl-siloxane (PDMS) layers. The PSF layer, fabricated using a simple non-solvent induced phase separation (NIPS) method, exhibits a high solar reflectance of 98.2 ​% across wavelengths of 0.3–2.5 ​μm owing to its high refractive index of 1.64. The PDMS layers, attached on both sides of the PSF membrane via roll-to-roll lamination, offer excellent mid-infrared (MIR) emissivity of 94.2 ​% across wavelengths of 2.5–20 ​μm. Under midday conditions, the membrane achieves an average temperature reduction of 5.0 ​°C below ambient air temperature, with a theoretical cooling power of 114 ​W/m2. Year-round simulations indicate significant cooling energy saving in warm and tropical regions. The new membrane represents a significant advance in PDRC technology, offering promising applications in energy-efficient cooling systems.

Abstract Image

三明治状复合膜,用于先进的辐射冷却应用
被动日间辐射冷却(PDRC)提供了一种节能的冷却方法,通过大气透明窗(ATW)反射阳光并将热量散发到寒冷的外层空间。为了获得最佳性能,辐射冷却器需要太阳光谱中的高反射率,以最大限度地减少太阳吸热,并在ATW中接近统一的发射率,以最大限度地散热。在这里,我们提出了一种可伸缩的复合辐射冷却膜(cRCM),由分层多孔聚砜(PSF)层组成,夹在两个柔性聚二甲基硅氧烷(PDMS)层之间。采用简单的非溶剂诱导相分离(NIPS)方法制备的PSF层在0.3 ~ 2.5 μm波长范围内具有98.2%的高太阳反射率,折射率为1.64。PDMS层通过卷对卷层压贴在PSF膜的两侧,在2.5-20 μm波长范围内提供了94.2%的优异中红外(MIR)发射率。在正午条件下,膜的平均温度比环境空气温度低5.0℃,理论冷却功率为114 W/m2。全年模拟表明,温暖和热带地区的制冷节能效果显著。新膜代表了PDRC技术的重大进步,在节能冷却系统中提供了有前途的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信