Development of fly ash/melamine composites for crystal violate dye removal from aqueous media

Q1 Environmental Science
Imran Khan Rind , Ahmet Sarı , Mustafa Tuzen , Muhammad Farooque Lanjwani , Tawfik A. Saleh
{"title":"Development of fly ash/melamine composites for crystal violate dye removal from aqueous media","authors":"Imran Khan Rind ,&nbsp;Ahmet Sarı ,&nbsp;Mustafa Tuzen ,&nbsp;Muhammad Farooque Lanjwani ,&nbsp;Tawfik A. Saleh","doi":"10.1016/j.enmm.2025.101056","DOIUrl":null,"url":null,"abstract":"<div><div>Fly ash (FA) as a low-cost and easily obtainable by-product from thermal power plants is considered for the decontamination of inorganic and organic pollutants from wastewater. In this work, FA was grafted with melamine and the obtained composite was used for the adsorption of crystal violet (CV) from water. By modification of melamine, the surface of FA was enhanced with amide groups as effective binding groups for CV molecules and therefore achieved higher sorption capacity. The chemical and textural characteristics of the FA/Melamine composite were studied by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). Factorial designing was used for evaluating optimum adsorption parameters. ANOVA analysis of the P-value of individuals and combined variables was significant due to a P-value of less than 0.05 and a higher F-value. Equilibrium results show a monolayer isotherm model by Langmuir isotherm model with a maximum CV uptake capacity of 487 mg g<sup>−1</sup> under optimized conditions (250 mg adsorbent dosage, 10 ppm concentration, 30 min contact time and pH 6.0). Kinetic studies revealed that CV removal was nominated by the pseudo-second-order (PSO) model. CV dye molecules were adsorbed onto FA/Melamine composite via electrostatic attractions dipole–dipole interactions and n-π stacking interactions. Furthermore, the obtained results exposed that the synthesized FA/Melamine composite can be assessed as a promising sorbent for CV dye removal with high adsorption capacity.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101056"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Fly ash (FA) as a low-cost and easily obtainable by-product from thermal power plants is considered for the decontamination of inorganic and organic pollutants from wastewater. In this work, FA was grafted with melamine and the obtained composite was used for the adsorption of crystal violet (CV) from water. By modification of melamine, the surface of FA was enhanced with amide groups as effective binding groups for CV molecules and therefore achieved higher sorption capacity. The chemical and textural characteristics of the FA/Melamine composite were studied by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). Factorial designing was used for evaluating optimum adsorption parameters. ANOVA analysis of the P-value of individuals and combined variables was significant due to a P-value of less than 0.05 and a higher F-value. Equilibrium results show a monolayer isotherm model by Langmuir isotherm model with a maximum CV uptake capacity of 487 mg g−1 under optimized conditions (250 mg adsorbent dosage, 10 ppm concentration, 30 min contact time and pH 6.0). Kinetic studies revealed that CV removal was nominated by the pseudo-second-order (PSO) model. CV dye molecules were adsorbed onto FA/Melamine composite via electrostatic attractions dipole–dipole interactions and n-π stacking interactions. Furthermore, the obtained results exposed that the synthesized FA/Melamine composite can be assessed as a promising sorbent for CV dye removal with high adsorption capacity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信