Bin Wu , Mingna Li , Fan Yang , Yi Lu , Yang Yi , Mao Liu , Ke Cheng , Di Jiang , Bin Yan
{"title":"A stress-driven model for bone density evolution in rats during orthodontic tooth movement","authors":"Bin Wu , Mingna Li , Fan Yang , Yi Lu , Yang Yi , Mao Liu , Ke Cheng , Di Jiang , Bin Yan","doi":"10.1016/j.jmbbm.2025.106932","DOIUrl":null,"url":null,"abstract":"<div><div>Orthodontic bone remodeling simulations offer a scientific foundation for optimizing treatment plans and predicting outcomes in orthodontics. Since alveolar bone exhibits unique regional responses and high sensitivity to tensile and compressive stresses, traditional models often fail to account for these characteristics, limiting their accuracy in predicting the microstructural changes of alveolar bone under external forces. To address this issue, this study proposes a bone remodeling model based on equivalent stress derived from the Mohr strength theory as the mechanical stimulus. The model differentiates tension and compression zones within the alveolar bone and simulates density changes driven by the orthodontic remodeling process: bone formation in tension zone and resorption in compression zone. Orthodontic experiments on rats were conducted to monitor changes in alveolar bone density at 7 and 14 days. Results revealed a density increase of around 3.16% and 9.84% in tension zone and a decrease of approximately 4.86% and 3.61% in compression zone on days 7 and 14, respectively. A comparison between the experimental data and the simulation results of the bone remodeling algorithm demonstrated a consistent trend, validating that the proposed model effectively reflects the dynamic process of bone remodeling. This study provides a new perspective for orthodontic bone remodeling simulations and lays a foundation for further exploration of the mechanisms underlying alveolar bone density changes.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"165 ","pages":"Article 106932"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125000487","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Orthodontic bone remodeling simulations offer a scientific foundation for optimizing treatment plans and predicting outcomes in orthodontics. Since alveolar bone exhibits unique regional responses and high sensitivity to tensile and compressive stresses, traditional models often fail to account for these characteristics, limiting their accuracy in predicting the microstructural changes of alveolar bone under external forces. To address this issue, this study proposes a bone remodeling model based on equivalent stress derived from the Mohr strength theory as the mechanical stimulus. The model differentiates tension and compression zones within the alveolar bone and simulates density changes driven by the orthodontic remodeling process: bone formation in tension zone and resorption in compression zone. Orthodontic experiments on rats were conducted to monitor changes in alveolar bone density at 7 and 14 days. Results revealed a density increase of around 3.16% and 9.84% in tension zone and a decrease of approximately 4.86% and 3.61% in compression zone on days 7 and 14, respectively. A comparison between the experimental data and the simulation results of the bone remodeling algorithm demonstrated a consistent trend, validating that the proposed model effectively reflects the dynamic process of bone remodeling. This study provides a new perspective for orthodontic bone remodeling simulations and lays a foundation for further exploration of the mechanisms underlying alveolar bone density changes.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.