A directed batch growing self-organizing map based niching differential evolution for multimodal optimization problems

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mahesh Shankar , Palaniappan Ramu , Kalyanmoy Deb
{"title":"A directed batch growing self-organizing map based niching differential evolution for multimodal optimization problems","authors":"Mahesh Shankar ,&nbsp;Palaniappan Ramu ,&nbsp;Kalyanmoy Deb","doi":"10.1016/j.asoc.2025.112862","DOIUrl":null,"url":null,"abstract":"<div><div>Many real-world optimization problems naturally result in multiple optimal solutions, thereby falling in the class of multimodal optimization problems (MMOPs). A task of finding a plurality of optimal solutions for MMOPs comes under the scope of multimodal optimization algorithms (MMOAs). To solve MMOPs, <em>niching</em> techniques are usually employed by proactively modifying standard evolutionary algorithms (EAs) to form stable subpopulations around multiple niches within their evolving populations. This way, each optimum can germinate and eventually help form a cloud of solutions around each optimum parallely, thereby finding multiple (but a finite number of) optima simultaneously. However, several existing niching techniques suffer from common drawbacks, such as sensitivity with niching parameters or poor performance on high-dimensional problems. An efficient niching technique needs an effective population partitioning method around distinct leading solutions representing each optimum. In this paper, we propose a directed batch growing self-organizing map based niching differential evolution (DBGSOM-NDE). For this purpose, a standard differential evolution (DE) method is divided into two overlapping phases: (i) population-wide search (PS) and (ii) niche-wide search (NS). PS executes neighborhood search around each individual, promoting exploration, while NS explores only the leaders, thus reducing the effect of exploration for a better search intensification around the leaders using a Cauchy-distribution based local search to improve them. We evaluate the role of each operator of the proposed approach DBGSOM-NDE and compare its performance with a number of state-of-the-art niching techniques demonstrating its competitiveness and superiority, especially on high-dimensional and nonlinear problems taken from the existing literature. Finally, a hyper-parametric study is provided demonstrating weak dependence of them to the algorithm’s performance.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"172 ","pages":"Article 112862"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625001735","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Many real-world optimization problems naturally result in multiple optimal solutions, thereby falling in the class of multimodal optimization problems (MMOPs). A task of finding a plurality of optimal solutions for MMOPs comes under the scope of multimodal optimization algorithms (MMOAs). To solve MMOPs, niching techniques are usually employed by proactively modifying standard evolutionary algorithms (EAs) to form stable subpopulations around multiple niches within their evolving populations. This way, each optimum can germinate and eventually help form a cloud of solutions around each optimum parallely, thereby finding multiple (but a finite number of) optima simultaneously. However, several existing niching techniques suffer from common drawbacks, such as sensitivity with niching parameters or poor performance on high-dimensional problems. An efficient niching technique needs an effective population partitioning method around distinct leading solutions representing each optimum. In this paper, we propose a directed batch growing self-organizing map based niching differential evolution (DBGSOM-NDE). For this purpose, a standard differential evolution (DE) method is divided into two overlapping phases: (i) population-wide search (PS) and (ii) niche-wide search (NS). PS executes neighborhood search around each individual, promoting exploration, while NS explores only the leaders, thus reducing the effect of exploration for a better search intensification around the leaders using a Cauchy-distribution based local search to improve them. We evaluate the role of each operator of the proposed approach DBGSOM-NDE and compare its performance with a number of state-of-the-art niching techniques demonstrating its competitiveness and superiority, especially on high-dimensional and nonlinear problems taken from the existing literature. Finally, a hyper-parametric study is provided demonstrating weak dependence of them to the algorithm’s performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信