{"title":"Inter-individual variability in muscle sympathetic nerve activity at rest and during exercise: Disconnection with blood pressure","authors":"André L. Teixeira, Philip J. Millar","doi":"10.1016/j.autneu.2025.103250","DOIUrl":null,"url":null,"abstract":"<div><div>Microneurographic recordings of muscle sympathetic nerve activity (MSNA) have provided fundamental insight into sympathetic discharge patterns at rest and during exercise in health and disease. A key feature of MSNA recordings at rest is a large inter-individual variability, even among healthy adults. The physiological consequences of inter-individual variability in MSNA are commonly discussed as being associated with the regulation of resting blood pressure. However, available evidence from large cross-sectional analyses demonstrate a near absence of an association between resting MSNA and blood pressure. Less appreciated, MSNA also exhibits inter-individual variability in response to stress, such as exercise. Again, the consequences of variability in MSNA are unclear and can be dissociated from the blood pressure response, particularly at low-to-moderate intensity muscle contractions for short durations (≤2 min). In this brief review, we summarize several examples of how inter-individual variability in MSNA is unrelated to blood pressure control at rest and during exercise and discuss potential mechanisms responsible for this observation, and key methodological considerations for future study design and interpretation. Additionally, we highlight several unanswered questions that could pave the way for future investigations in the field.</div></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":"258 ","pages":"Article 103250"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic Neuroscience-Basic & Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566070225000128","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microneurographic recordings of muscle sympathetic nerve activity (MSNA) have provided fundamental insight into sympathetic discharge patterns at rest and during exercise in health and disease. A key feature of MSNA recordings at rest is a large inter-individual variability, even among healthy adults. The physiological consequences of inter-individual variability in MSNA are commonly discussed as being associated with the regulation of resting blood pressure. However, available evidence from large cross-sectional analyses demonstrate a near absence of an association between resting MSNA and blood pressure. Less appreciated, MSNA also exhibits inter-individual variability in response to stress, such as exercise. Again, the consequences of variability in MSNA are unclear and can be dissociated from the blood pressure response, particularly at low-to-moderate intensity muscle contractions for short durations (≤2 min). In this brief review, we summarize several examples of how inter-individual variability in MSNA is unrelated to blood pressure control at rest and during exercise and discuss potential mechanisms responsible for this observation, and key methodological considerations for future study design and interpretation. Additionally, we highlight several unanswered questions that could pave the way for future investigations in the field.
期刊介绍:
This is an international journal with broad coverage of all aspects of the autonomic nervous system in man and animals. The main areas of interest include the innervation of blood vessels and viscera, autonomic ganglia, efferent and afferent autonomic pathways, and autonomic nuclei and pathways in the central nervous system.
The Editors will consider papers that deal with any aspect of the autonomic nervous system, including structure, physiology, pharmacology, biochemistry, development, evolution, ageing, behavioural aspects, integrative role and influence on emotional and physical states of the body. Interdisciplinary studies will be encouraged. Studies dealing with human pathology will be also welcome.