Ductile fracture assessment of wire and arc additive manufactured steel materials

IF 4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Haohui Xin , Junqiang Li , Youyou Zhang , Milan Veljkovic , Nicolas Persem , Laurent Lorich
{"title":"Ductile fracture assessment of wire and arc additive manufactured steel materials","authors":"Haohui Xin ,&nbsp;Junqiang Li ,&nbsp;Youyou Zhang ,&nbsp;Milan Veljkovic ,&nbsp;Nicolas Persem ,&nbsp;Laurent Lorich","doi":"10.1016/j.jcsr.2025.109422","DOIUrl":null,"url":null,"abstract":"<div><div>This research aims to experimentally investigate the ductile fracture characteristics and the level of anisotropy of four plates, 400 mm × 150 mm × 3.72 mm, made by Wire Arc Additive Manufacturing (WAAM) technology with 1 mm thick layers. Relatively small roughness is measured, expressed in maximum peak-to-valley height, measured by scanning, of 98 μm. Calibrated parameters for an advanced computational material model are derived for a finite element mesh size of 0.5 mm. The experimental campaign is based on eight types of short coupon specimens, analysed to explore fracture behaviour exposed to various stress conditions. Sixty-five coupon specimens, 51 milled and 14 tested in as printed conditions, cut out in three directions relative to the printing direction, are examined. The assumption of isotropic mechanical characteristics is confirmed. The mesoscale critical equivalent plastic strain (MCEPS) methodology is used to predict experimental results numerically. Three stages are considered: elastic, plastic, and couple plastic-damaged stages. The accuracy of the calibrated parameters is validated by comparing the engineering stress-strain relationships obtained from experimental tests and finite element (FE) analysis, reaching very good agreement. A list of all material parameters for ductile fracture modelling at various triaxiality levels and Lode parameters is provided for a mesh size of 0.5 mm.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"228 ","pages":"Article 109422"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X25001002","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to experimentally investigate the ductile fracture characteristics and the level of anisotropy of four plates, 400 mm × 150 mm × 3.72 mm, made by Wire Arc Additive Manufacturing (WAAM) technology with 1 mm thick layers. Relatively small roughness is measured, expressed in maximum peak-to-valley height, measured by scanning, of 98 μm. Calibrated parameters for an advanced computational material model are derived for a finite element mesh size of 0.5 mm. The experimental campaign is based on eight types of short coupon specimens, analysed to explore fracture behaviour exposed to various stress conditions. Sixty-five coupon specimens, 51 milled and 14 tested in as printed conditions, cut out in three directions relative to the printing direction, are examined. The assumption of isotropic mechanical characteristics is confirmed. The mesoscale critical equivalent plastic strain (MCEPS) methodology is used to predict experimental results numerically. Three stages are considered: elastic, plastic, and couple plastic-damaged stages. The accuracy of the calibrated parameters is validated by comparing the engineering stress-strain relationships obtained from experimental tests and finite element (FE) analysis, reaching very good agreement. A list of all material parameters for ductile fracture modelling at various triaxiality levels and Lode parameters is provided for a mesh size of 0.5 mm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Constructional Steel Research
Journal of Constructional Steel Research 工程技术-工程:土木
CiteScore
7.90
自引率
19.50%
发文量
550
审稿时长
46 days
期刊介绍: The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信