Self-assembly of magnetic colloids under unsteady fields

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
G. Camacho, J.R. Morillas, J. de Vicente
{"title":"Self-assembly of magnetic colloids under unsteady fields","authors":"G. Camacho,&nbsp;J.R. Morillas,&nbsp;J. de Vicente","doi":"10.1016/j.cocis.2025.101903","DOIUrl":null,"url":null,"abstract":"<div><div>The use of magnetic fields offers an external, versatile way of controlling self-assembly of colloids. This review provides an exhaustive overview of unsteady fields that can vary in one, two, or three dimensions of space, as a powerful tool to direct the self-assembly of magnetic colloids into structures with tunable properties. Unlike steady fields, unsteady (nonstationary) fields can overcome the limitations of classical dipolar interactions, leading to a much wider range of structures, ranging from dense crystalline aggregates to 3D spanning networks, or dynamic clusters. The ability to precisely control the amplitude, frequency, and field direction allows for fine-tuning the interplay of interparticle forces, resulting in controllable assembly pathways. This review analyzes how different types of unsteady fields influence the morphology and dynamics of the self-assembled structures. Key parameters, such as the Mason number, are discussed to characterize the governing driving forces, and potential applications are highlighted.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"76 ","pages":"Article 101903"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029425000093","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of magnetic fields offers an external, versatile way of controlling self-assembly of colloids. This review provides an exhaustive overview of unsteady fields that can vary in one, two, or three dimensions of space, as a powerful tool to direct the self-assembly of magnetic colloids into structures with tunable properties. Unlike steady fields, unsteady (nonstationary) fields can overcome the limitations of classical dipolar interactions, leading to a much wider range of structures, ranging from dense crystalline aggregates to 3D spanning networks, or dynamic clusters. The ability to precisely control the amplitude, frequency, and field direction allows for fine-tuning the interplay of interparticle forces, resulting in controllable assembly pathways. This review analyzes how different types of unsteady fields influence the morphology and dynamics of the self-assembled structures. Key parameters, such as the Mason number, are discussed to characterize the governing driving forces, and potential applications are highlighted.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信