{"title":"“Biological evaluation of 3D-Printed chitosan-based scaffolds for tissue engineering”","authors":"Zahra Behrooznia, Jhamak Nourmohammadi, Zahra Mohammadi, Fatemeh Shabani, Rahele Mashhadi","doi":"10.1016/j.carres.2025.109416","DOIUrl":null,"url":null,"abstract":"<div><div>Chitosan is a natural polysaccharide with excellent biocompatibility, biodegradability, and antibacterial capabilities, making it a good candidate for tissue engineering. 3D printing has revolutionized biomaterial fabrication owing to its precision, customization, and ability to create complex structures. This article aims to provide an overview of the current advances in 3D printing techniques for fabricating scaffolds based on chitosan and its derivatives. It also describes various printing methods, including extrusion bioprinting technique, inkjet bioprinting, stereolithography, digital light processing, and indirect 3D printing for controlling porosity, mechanical strength, and biological characteristics of chitosan scaffolds for a variety of tissues, like bone, vascular, cardiac, cartilage, and skin. This review also examines the biological properties of 3D-printed chitosan scaffolds. The advancements in biological performance and 3D printing technology indicate a promising future for developing flexible, customized scaffolds consisting of chitosan.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"551 ","pages":"Article 109416"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621525000424","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chitosan is a natural polysaccharide with excellent biocompatibility, biodegradability, and antibacterial capabilities, making it a good candidate for tissue engineering. 3D printing has revolutionized biomaterial fabrication owing to its precision, customization, and ability to create complex structures. This article aims to provide an overview of the current advances in 3D printing techniques for fabricating scaffolds based on chitosan and its derivatives. It also describes various printing methods, including extrusion bioprinting technique, inkjet bioprinting, stereolithography, digital light processing, and indirect 3D printing for controlling porosity, mechanical strength, and biological characteristics of chitosan scaffolds for a variety of tissues, like bone, vascular, cardiac, cartilage, and skin. This review also examines the biological properties of 3D-printed chitosan scaffolds. The advancements in biological performance and 3D printing technology indicate a promising future for developing flexible, customized scaffolds consisting of chitosan.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".