HTEC foot: A novel foot structure for humanoid robots combining static stability and dynamic adaptability

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY
Jintao Zhang , Xuechao Chen , Zhangguo Yu , Lianqiang Han , Zhifa Gao , Qingrui Zhao , Gao Huang , Ke Li , Qiang Huang
{"title":"HTEC foot: A novel foot structure for humanoid robots combining static stability and dynamic adaptability","authors":"Jintao Zhang ,&nbsp;Xuechao Chen ,&nbsp;Zhangguo Yu ,&nbsp;Lianqiang Han ,&nbsp;Zhifa Gao ,&nbsp;Qingrui Zhao ,&nbsp;Gao Huang ,&nbsp;Ke Li ,&nbsp;Qiang Huang","doi":"10.1016/j.dt.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><div>Passive bionic feet, known for their human-like compliance, have garnered attention for their potential to achieve notable environmental adaptability. In this paper, a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid (REH) dynamics model. First, a bionic foot model, named the Hinge Tension Elastic Complex (HTEC) model, was developed by extracting key features from human feet. Furthermore, the kinematics and REH dynamics of the HTEC model were established. Based on the foot dynamics, a nonlinear optimization method for stiffness matching (NOSM) was designed. Finally, the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot. The foot static stability is achieved. The enhanced adaptability is observed as the robot traverses square steel, lawn, and cobblestone terrains. Through proposed design method and structure, the mobility of the humanoid robot is improved.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"44 ","pages":"Pages 30-51"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724001946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Passive bionic feet, known for their human-like compliance, have garnered attention for their potential to achieve notable environmental adaptability. In this paper, a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid (REH) dynamics model. First, a bionic foot model, named the Hinge Tension Elastic Complex (HTEC) model, was developed by extracting key features from human feet. Furthermore, the kinematics and REH dynamics of the HTEC model were established. Based on the foot dynamics, a nonlinear optimization method for stiffness matching (NOSM) was designed. Finally, the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot. The foot static stability is achieved. The enhanced adaptability is observed as the robot traverses square steel, lawn, and cobblestone terrains. Through proposed design method and structure, the mobility of the humanoid robot is improved.
HTEC足部:一种结合静态稳定性和动态适应性的新型仿人机器人足部结构
被动仿生脚以其与人类相似的顺应性而闻名,因其具有显著的环境适应性而受到关注。本文提出了一种利用刚弹性混合动力学模型统一被动仿生足静态支撑稳定性和动态地形适应性的方法。首先,通过提取人体足部的关键特征,建立了铰链张力弹性复合体(Hinge Tension Elastic Complex, HTEC)仿生足模型;建立了HTEC模型的运动学和REH动力学模型。基于足部动力学,设计了一种非线性刚度匹配优化方法。最后,构建了基于htec的足部,并将其应用于BHR-B2类人机器人。实现足部静稳定性。当机器人穿过方形钢,草坪和鹅卵石地形时,可以观察到增强的适应性。通过提出的设计方法和结构,提高了仿人机器人的机动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信