Zhun Li , Xinhu Zhang , Kechun Shen , Jing Liu , Jian Zhang , Guang Pan
{"title":"Experimental study on the buckling of composite cylinders with reinforced circular hole under hydrostatic pressure","authors":"Zhun Li , Xinhu Zhang , Kechun Shen , Jing Liu , Jian Zhang , Guang Pan","doi":"10.1016/j.dt.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a type of reinforcing structure for composite shell with single and through hole is presented. The experimental tests for the composite shells without hole, with single hole and reinforced structure, with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system. The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement. The results show that the entire deformation process of the shell can be divided into three: uniform compression, \"buckling mode formation\" and buckling. The \"buckling mode formation\" process is captured and reported for the first time. For the composite shell with single hole, the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell. For the composite shell with through hole, sealing effect can be achieved by the proposed reinforcing structure, but the buckling capacity of the shell after reinforcement can only reach 77% of the original buckling capacity.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"44 ","pages":"Pages 231-247"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724002368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a type of reinforcing structure for composite shell with single and through hole is presented. The experimental tests for the composite shells without hole, with single hole and reinforced structure, with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system. The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement. The results show that the entire deformation process of the shell can be divided into three: uniform compression, "buckling mode formation" and buckling. The "buckling mode formation" process is captured and reported for the first time. For the composite shell with single hole, the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell. For the composite shell with through hole, sealing effect can be achieved by the proposed reinforcing structure, but the buckling capacity of the shell after reinforcement can only reach 77% of the original buckling capacity.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.