Sifan Wu , Maosen Shao , Sihuan Wu , Zhilin He , Hui Wang , Jinxiu Zhang , Yuan Liu
{"title":"A high maneuvering motion strategy and stable control method for tandem twin-rotor aerial-aquatic vehicles near the water surface","authors":"Sifan Wu , Maosen Shao , Sihuan Wu , Zhilin He , Hui Wang , Jinxiu Zhang , Yuan Liu","doi":"10.1016/j.dt.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>The maneuverability and stealth of aerial-aquatic vehicles (AAVs) is of significant importance for future integrated air-sea combat missions. To improve the maneuverability and stealth of AAVs near the water surface, this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV, inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface. The novel tandem twin-rotor AAV was employed as the research subject and a strategy-based ADRC control method for validation, comparing it with a strategy-based PID control method. The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability. The strategy-based ADRC control method exhibits a certain advantage in controlling height, pitch angle, and reducing impact force. This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"44 ","pages":"Pages 206-220"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724002344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The maneuverability and stealth of aerial-aquatic vehicles (AAVs) is of significant importance for future integrated air-sea combat missions. To improve the maneuverability and stealth of AAVs near the water surface, this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV, inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface. The novel tandem twin-rotor AAV was employed as the research subject and a strategy-based ADRC control method for validation, comparing it with a strategy-based PID control method. The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability. The strategy-based ADRC control method exhibits a certain advantage in controlling height, pitch angle, and reducing impact force. This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.