Stress-dependent permeability in sedimentary rocks: A fractal model based on poroelastic compressibilities

IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Santiago G. Solazzi , Guido Panizza , Dario G. Robledo , Esteban A. Domene , Emilio Camilión
{"title":"Stress-dependent permeability in sedimentary rocks: A fractal model based on poroelastic compressibilities","authors":"Santiago G. Solazzi ,&nbsp;Guido Panizza ,&nbsp;Dario G. Robledo ,&nbsp;Esteban A. Domene ,&nbsp;Emilio Camilión","doi":"10.1016/j.ijrmms.2025.106055","DOIUrl":null,"url":null,"abstract":"<div><div>Stress variations in the subsurface can modify the permeability and the poroelastic compressibilities of rocks and soils. In general, stress-dependent permeability predictions are based on empirical models, which disregard the underlying connection between permeability and poroelastic compressibilites. In this work, we present a physically-based constitutive model to predict stress-induced permeability variations in sedimentary rocks accounting for the fact that drained pore compressibilities vary with the differential stress. The proposed model is based on a fractal conceptualization of the pore space and results in a closed analytical expression. We validate the proposed model with experimental measurements of pore compressibility and permeability in a series of sedimentary rocks by means of a fractal dimension parameter fitting. Results show that the corresponding fractal dimensions are in reasonable agreement with pore size distributions, obtained from thin section analysis, and capillary pressure saturation curves of the corresponding rocks, given by mercury intrusion tests. Finally, we compare the proposed model with alternative stress-dependent permeability models that are broadly used in the specific literature, such as, exponential and power law models, and attempt to provide these empirical models with a first order physical interpretation. The proposed approach and associated results may help estimating permeability from poroelastic compressibility measurements, which is, to date, widely regarded as a frontier in the overall fields of Geomechanics and Applied Geophysics.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"187 ","pages":"Article 106055"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000322","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stress variations in the subsurface can modify the permeability and the poroelastic compressibilities of rocks and soils. In general, stress-dependent permeability predictions are based on empirical models, which disregard the underlying connection between permeability and poroelastic compressibilites. In this work, we present a physically-based constitutive model to predict stress-induced permeability variations in sedimentary rocks accounting for the fact that drained pore compressibilities vary with the differential stress. The proposed model is based on a fractal conceptualization of the pore space and results in a closed analytical expression. We validate the proposed model with experimental measurements of pore compressibility and permeability in a series of sedimentary rocks by means of a fractal dimension parameter fitting. Results show that the corresponding fractal dimensions are in reasonable agreement with pore size distributions, obtained from thin section analysis, and capillary pressure saturation curves of the corresponding rocks, given by mercury intrusion tests. Finally, we compare the proposed model with alternative stress-dependent permeability models that are broadly used in the specific literature, such as, exponential and power law models, and attempt to provide these empirical models with a first order physical interpretation. The proposed approach and associated results may help estimating permeability from poroelastic compressibility measurements, which is, to date, widely regarded as a frontier in the overall fields of Geomechanics and Applied Geophysics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信