Santiago G. Solazzi , Guido Panizza , Dario G. Robledo , Esteban A. Domene , Emilio Camilión
{"title":"Stress-dependent permeability in sedimentary rocks: A fractal model based on poroelastic compressibilities","authors":"Santiago G. Solazzi , Guido Panizza , Dario G. Robledo , Esteban A. Domene , Emilio Camilión","doi":"10.1016/j.ijrmms.2025.106055","DOIUrl":null,"url":null,"abstract":"<div><div>Stress variations in the subsurface can modify the permeability and the poroelastic compressibilities of rocks and soils. In general, stress-dependent permeability predictions are based on empirical models, which disregard the underlying connection between permeability and poroelastic compressibilites. In this work, we present a physically-based constitutive model to predict stress-induced permeability variations in sedimentary rocks accounting for the fact that drained pore compressibilities vary with the differential stress. The proposed model is based on a fractal conceptualization of the pore space and results in a closed analytical expression. We validate the proposed model with experimental measurements of pore compressibility and permeability in a series of sedimentary rocks by means of a fractal dimension parameter fitting. Results show that the corresponding fractal dimensions are in reasonable agreement with pore size distributions, obtained from thin section analysis, and capillary pressure saturation curves of the corresponding rocks, given by mercury intrusion tests. Finally, we compare the proposed model with alternative stress-dependent permeability models that are broadly used in the specific literature, such as, exponential and power law models, and attempt to provide these empirical models with a first order physical interpretation. The proposed approach and associated results may help estimating permeability from poroelastic compressibility measurements, which is, to date, widely regarded as a frontier in the overall fields of Geomechanics and Applied Geophysics.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"187 ","pages":"Article 106055"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000322","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stress variations in the subsurface can modify the permeability and the poroelastic compressibilities of rocks and soils. In general, stress-dependent permeability predictions are based on empirical models, which disregard the underlying connection between permeability and poroelastic compressibilites. In this work, we present a physically-based constitutive model to predict stress-induced permeability variations in sedimentary rocks accounting for the fact that drained pore compressibilities vary with the differential stress. The proposed model is based on a fractal conceptualization of the pore space and results in a closed analytical expression. We validate the proposed model with experimental measurements of pore compressibility and permeability in a series of sedimentary rocks by means of a fractal dimension parameter fitting. Results show that the corresponding fractal dimensions are in reasonable agreement with pore size distributions, obtained from thin section analysis, and capillary pressure saturation curves of the corresponding rocks, given by mercury intrusion tests. Finally, we compare the proposed model with alternative stress-dependent permeability models that are broadly used in the specific literature, such as, exponential and power law models, and attempt to provide these empirical models with a first order physical interpretation. The proposed approach and associated results may help estimating permeability from poroelastic compressibility measurements, which is, to date, widely regarded as a frontier in the overall fields of Geomechanics and Applied Geophysics.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.