{"title":"Normalized solutions to Choquard equation including the critical exponents and a logarithmic perturbation","authors":"Yinbin Deng , Yulin Shi , Xiaolong Yang","doi":"10.1016/j.jde.2025.02.038","DOIUrl":null,"url":null,"abstract":"<div><div>We study the existence of normalized solutions to the following nonlinear Choquard equation<span><span><span>(0.1)</span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>u</mi><mi>log</mi><mo></mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>μ</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> under the mass constraint<span><span><span>(0.2)</span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> is a constant, <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>N</mi></math></span>, <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi></mrow></mfrac><mo>≤</mo><mi>p</mi><mo>≤</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, and the parameter <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> appears as a Lagrange multiplier. Under different assumptions on <em>p</em> and <em>c</em>, we first show the existence of the associated global minimizer which must be a ground state solution of <span><span>(0.1)</span></span> with the mass constraint <span><span>(0.2)</span></span> if <span><math><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi></mrow></mfrac><mo>≤</mo><mi>p</mi><mo>≤</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac></math></span>, and then we prove the existence of ground state solution and mountain-pass solution for <span><span>(0.1)</span></span> with the mass constraint <span><span>(0.2)</span></span> if <span><math><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo><</mo><mi>p</mi><mo>≤</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, where <span><math><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> is the Hardy-Littlewood-Sobolev upper critical exponent, <span><math><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi></mrow></mfrac></math></span> is the Hardy-Littlewood-Sobolev lower critical exponent and <span><math><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac></math></span> is the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-mass constraint critical exponent. Moreover, the asymptotic behaviors of ground state solution and mountain-pass solution as <span><math><mi>c</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> are obtained.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 204-246"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001573","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the existence of normalized solutions to the following nonlinear Choquard equation(0.1) under the mass constraint(0.2) where is a constant, , , , , and the parameter appears as a Lagrange multiplier. Under different assumptions on p and c, we first show the existence of the associated global minimizer which must be a ground state solution of (0.1) with the mass constraint (0.2) if , and then we prove the existence of ground state solution and mountain-pass solution for (0.1) with the mass constraint (0.2) if , where is the Hardy-Littlewood-Sobolev upper critical exponent, is the Hardy-Littlewood-Sobolev lower critical exponent and is the -mass constraint critical exponent. Moreover, the asymptotic behaviors of ground state solution and mountain-pass solution as are obtained.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics