Unlocking the molecular mechanisms of anticancer and immunomodulatory potentials of cariprazine in triple negative breast cancer

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Aleksandar Lazovic , Bojana Simovic Markovic , Irfan Corovic , Tijana Markovic , Marija Andjelkovic , Bojan Stojanovic , Ivan Jovanovic , Marina Mitrovic
{"title":"Unlocking the molecular mechanisms of anticancer and immunomodulatory potentials of cariprazine in triple negative breast cancer","authors":"Aleksandar Lazovic ,&nbsp;Bojana Simovic Markovic ,&nbsp;Irfan Corovic ,&nbsp;Tijana Markovic ,&nbsp;Marija Andjelkovic ,&nbsp;Bojan Stojanovic ,&nbsp;Ivan Jovanovic ,&nbsp;Marina Mitrovic","doi":"10.1016/j.biopha.2025.117931","DOIUrl":null,"url":null,"abstract":"<div><div>Triple-negative breast cancer (TNBC), a highly invasive type of cancer, is difficult to treat due to insufficient specific targets and low survival rates. Current therapy often encounters drug resistance or relapse; thus, repurposing existing drugs could revolutionize cancer treatment. This study examined the anticancer effects of the antipsychotics Cariprazine (CAR), Olanzapine (OLZ), and Clozapine (CLZ), and the immunomodulatory potential of CAR, <em>in vitro</em> and <em>in vivo</em> in TNBC models. <em>In vitro</em>, CAR, OLZ, and CLZ significantly inhibited the proliferation of TNBC cells. This inhibition occurred via the induction of mitochondrial apoptosis, G0/G1 cell cycle arrest, and the suppression of autophagy, as evidenced by the down-regulation of Bcl-2, p62, and pAKT; the upregulation of Bax and active caspase 3; the decrease of ΔΨM; and the promotion of cytochrome c release. In addition, CAR inhibited MDA-MB-231 cells migration. <em>In vivo</em>, CAR inhibited tumor growth in the 4T1 xenograft model without causing adverse effects and resulted in the mRNA upregulation caspase 9, p53, p21, and Beclin-1. In addition, CAR influenced the immune response by promoting the production of proinflammatory cytokines TNF-α, IFN-γ, IL-17, and IL-1β and increasing the percentage of TNF-α<sup>+</sup>, IL-17<sup>+</sup>, IL-1β<sup>+</sup>, and IFN-γ<sup>+</sup> CD3<sup>+</sup> splenocytes. In conclusion, compared with other antipsychotics, 5-FU, and cisplatin, CAR exerted the most potent anticancer activity in TNBC <em>in vitro</em> and <em>in vivo</em>. This efficacy may be attributed to its ability to regulate apoptosis and autophagy, promote G0/G1 cell cycle arrest, and modulate antitumor immune response, suggesting its therapeutic potential in breast cancer.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"184 ","pages":"Article 117931"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001258","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC), a highly invasive type of cancer, is difficult to treat due to insufficient specific targets and low survival rates. Current therapy often encounters drug resistance or relapse; thus, repurposing existing drugs could revolutionize cancer treatment. This study examined the anticancer effects of the antipsychotics Cariprazine (CAR), Olanzapine (OLZ), and Clozapine (CLZ), and the immunomodulatory potential of CAR, in vitro and in vivo in TNBC models. In vitro, CAR, OLZ, and CLZ significantly inhibited the proliferation of TNBC cells. This inhibition occurred via the induction of mitochondrial apoptosis, G0/G1 cell cycle arrest, and the suppression of autophagy, as evidenced by the down-regulation of Bcl-2, p62, and pAKT; the upregulation of Bax and active caspase 3; the decrease of ΔΨM; and the promotion of cytochrome c release. In addition, CAR inhibited MDA-MB-231 cells migration. In vivo, CAR inhibited tumor growth in the 4T1 xenograft model without causing adverse effects and resulted in the mRNA upregulation caspase 9, p53, p21, and Beclin-1. In addition, CAR influenced the immune response by promoting the production of proinflammatory cytokines TNF-α, IFN-γ, IL-17, and IL-1β and increasing the percentage of TNF-α+, IL-17+, IL-1β+, and IFN-γ+ CD3+ splenocytes. In conclusion, compared with other antipsychotics, 5-FU, and cisplatin, CAR exerted the most potent anticancer activity in TNBC in vitro and in vivo. This efficacy may be attributed to its ability to regulate apoptosis and autophagy, promote G0/G1 cell cycle arrest, and modulate antitumor immune response, suggesting its therapeutic potential in breast cancer.
揭示卡哌嗪在三阴性乳腺癌中的抗癌和免疫调节潜力的分子机制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信