Jia-Heng Ni , Wang-Chu Lv , Dong-Xuan Zhang , Liang Bin , Yu Zhang , Yang Yu , Qi-Ping Su , Chui-Ping Yang
{"title":"Deterministic preparation of GHZ entangled states with multiple superconducting qutrits in circuit QED","authors":"Jia-Heng Ni , Wang-Chu Lv , Dong-Xuan Zhang , Liang Bin , Yu Zhang , Yang Yu , Qi-Ping Su , Chui-Ping Yang","doi":"10.1016/j.cjph.2025.01.040","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past decade, several works have been devoted to the generation of entangled states with superconducting (SC) qubits. Recently, attention has shifted to the generation of entangled states with SC qutrits (three-level quantum systems). However, the existing works are limited to the preparation of a maximally entangled EPR pair with two SC qutrits and a Greenberger-Horne-Zeilinger (GHZ) entangled state of three SC qutrits. We here propose a simple method to create a GHZ entangled state of multiple SC qutrits in circuit QED. The GHZ state is generated by employing multiple SC qutrits coupled to a microwave cavity or resonator. This proposal essentially operates by the cavity-qutrit dispersive interaction. By using this proposal, a GHZ state with an arbitrary number of SC qutrits can, in principle, be created. Since only a coupler cavity is utilized, the circuit hardware resources are minimized. No auxiliary energy levels of the qutrits are needed for the entangled state preparation. The GHZ state can be created deterministically. As an example, we analyze the experimental feasibility of preparing a GHZ state of five SC transmon qutrits within current circuit QED technology. This proposal is universal and can be extended to create a GHZ entangled state of multiple matter qutrits (e.g., atomic qutrits, quantum-dot qutrits, NV-center qutrits, Magnon qutrits, and various SC qutrits) by employing multiple natural or artificial three-level atoms coupled to a microwave or optical cavity.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"94 ","pages":"Pages 504-517"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325000413","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, several works have been devoted to the generation of entangled states with superconducting (SC) qubits. Recently, attention has shifted to the generation of entangled states with SC qutrits (three-level quantum systems). However, the existing works are limited to the preparation of a maximally entangled EPR pair with two SC qutrits and a Greenberger-Horne-Zeilinger (GHZ) entangled state of three SC qutrits. We here propose a simple method to create a GHZ entangled state of multiple SC qutrits in circuit QED. The GHZ state is generated by employing multiple SC qutrits coupled to a microwave cavity or resonator. This proposal essentially operates by the cavity-qutrit dispersive interaction. By using this proposal, a GHZ state with an arbitrary number of SC qutrits can, in principle, be created. Since only a coupler cavity is utilized, the circuit hardware resources are minimized. No auxiliary energy levels of the qutrits are needed for the entangled state preparation. The GHZ state can be created deterministically. As an example, we analyze the experimental feasibility of preparing a GHZ state of five SC transmon qutrits within current circuit QED technology. This proposal is universal and can be extended to create a GHZ entangled state of multiple matter qutrits (e.g., atomic qutrits, quantum-dot qutrits, NV-center qutrits, Magnon qutrits, and various SC qutrits) by employing multiple natural or artificial three-level atoms coupled to a microwave or optical cavity.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.