Synthesis and Biological Evaluation of Bile Acid–Triclosan Conjugates: A Study on Antibacterial, Antibiofilm, and Molecular Docking

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Neha V. Rathod,  and , Satyendra Mishra*, 
{"title":"Synthesis and Biological Evaluation of Bile Acid–Triclosan Conjugates: A Study on Antibacterial, Antibiofilm, and Molecular Docking","authors":"Neha V. Rathod,&nbsp; and ,&nbsp;Satyendra Mishra*,&nbsp;","doi":"10.1021/acs.bioconjchem.4c0053910.1021/acs.bioconjchem.4c00539","DOIUrl":null,"url":null,"abstract":"<p >This work describes the synthesis, characterization, and antibacterial properties of four bile acid–triclosan conjugates. The in vitro antibacterial activity of synthetic bile acid–triclosan conjugates was investigated against a panel of Gram-positive and Gram-negative bacteria. Conjugates <b>3</b> and <b>4</b> show high activity against <i>Escherichia coli</i> (ATCC25922), with IC<sub>50</sub> values of 2.94 ± 0.7 and 1.51 ± 0.05 μM, respectively. Conjugate <b>4</b> demonstrated 9 times the activity of triclosan (6.77 μM) and 18 times the potency of kanamycin, a well-known antibiotic. Compound <b>3</b> showed higher potential activity against all evaluated strains, including <i>Bacillus megaterium</i> (IC<sub>50</sub>: 3.05 ± 0.02), <i>Bacillus amyloquefaciens</i> (IC<sub>50</sub>: 8.79 ± 0.01), <i>Serratia marcescens</i> (IC<sub>50</sub>: 6.77 ± 0.4), and <i>E. coli</i> (IC<sub>50</sub>: 1.51 ± 0.05 μM). These findings indicate that it has broad-spectrum antibacterial activity. Bile acid–triclosan conjugates prevent biofilms by up to 99% at low doses (conjugates <b>4</b>; 4.16 ± 0.8 μM), compared to triclosan. Conjugate <b>5</b> was most potent against <i>B. amyloquefaciens</i> (IC<sub>50</sub> = 5.23 ± 0.2 μM), while conjugate <b>4</b> was most effective against <i>B. megaterium</i> (IC<sub>50</sub> = 4.16 ± 0.8 μM) in biofilm formation. These conjugates inhibit biofilm formation by limiting the extracellular polymeric substance generation. The in vitro antibacterial study revealed that bile acid–triclosan conjugates were more effective than the parent molecule triclosan at inhibiting bacterial growth and biofilm formation against both Gram-positive and Gram-negative bacteria.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":"36 2","pages":"276–290 276–290"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.4c00539","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This work describes the synthesis, characterization, and antibacterial properties of four bile acid–triclosan conjugates. The in vitro antibacterial activity of synthetic bile acid–triclosan conjugates was investigated against a panel of Gram-positive and Gram-negative bacteria. Conjugates 3 and 4 show high activity against Escherichia coli (ATCC25922), with IC50 values of 2.94 ± 0.7 and 1.51 ± 0.05 μM, respectively. Conjugate 4 demonstrated 9 times the activity of triclosan (6.77 μM) and 18 times the potency of kanamycin, a well-known antibiotic. Compound 3 showed higher potential activity against all evaluated strains, including Bacillus megaterium (IC50: 3.05 ± 0.02), Bacillus amyloquefaciens (IC50: 8.79 ± 0.01), Serratia marcescens (IC50: 6.77 ± 0.4), and E. coli (IC50: 1.51 ± 0.05 μM). These findings indicate that it has broad-spectrum antibacterial activity. Bile acid–triclosan conjugates prevent biofilms by up to 99% at low doses (conjugates 4; 4.16 ± 0.8 μM), compared to triclosan. Conjugate 5 was most potent against B. amyloquefaciens (IC50 = 5.23 ± 0.2 μM), while conjugate 4 was most effective against B. megaterium (IC50 = 4.16 ± 0.8 μM) in biofilm formation. These conjugates inhibit biofilm formation by limiting the extracellular polymeric substance generation. The in vitro antibacterial study revealed that bile acid–triclosan conjugates were more effective than the parent molecule triclosan at inhibiting bacterial growth and biofilm formation against both Gram-positive and Gram-negative bacteria.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信