{"title":"Broadband Photoresponse Enhancement by Band Engineering in Sb-Doped MnBi2Te4","authors":"Zixuan Xu, Haonan Chen, Jiayu Wang, Yicheng Mou, Yingchao Xia, Jiaming Gu, Yuxiang Wang, Qi Liu, Jiaqi Liu, Wenqing Song, Qing Lan, Tuoyu Zhao, Wu Shi and Cheng Zhang*, ","doi":"10.1021/acsphotonics.4c0218210.1021/acsphotonics.4c02182","DOIUrl":null,"url":null,"abstract":"<p >Topological materials have attracted considerable attention for their potential in broadband and fast photoresponses, particularly in the infrared regime. However, the high carrier concentration in these systems often leads to rapid recombination of photogenerated carriers, limiting the photoresponsivity. Here, we demonstrate that Sb doping in MnBi<sub>2</sub>Te<sub>4</sub> effectively reduces carrier concentration and suppresses electron–hole recombination, thereby significantly improving the optoelectronic performance across the visible to mid-infrared spectra. The optimally doped Mn(Bi<sub>0.82</sub>Sb<sub>0.18</sub>)<sub>2</sub>Te<sub>4</sub> photodetector achieves a responsivity of 3.02 mA W<sup>–1</sup> with a response time of 18.5 μs at 1550 nm, and 0.795 mA W<sup>–1</sup> with a response time of 9.0 μs at 4 μm. These values represent nearly 2 orders of magnitude improvement compared to undoped MnBi<sub>2</sub>Te<sub>4</sub>. Our results highlight band engineering as an effective strategy to enhance the infrared performance of topological material-based photodetectors, opening new avenues for high-sensitivity infrared detection.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 2","pages":"1055–1062 1055–1062"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c02182","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Topological materials have attracted considerable attention for their potential in broadband and fast photoresponses, particularly in the infrared regime. However, the high carrier concentration in these systems often leads to rapid recombination of photogenerated carriers, limiting the photoresponsivity. Here, we demonstrate that Sb doping in MnBi2Te4 effectively reduces carrier concentration and suppresses electron–hole recombination, thereby significantly improving the optoelectronic performance across the visible to mid-infrared spectra. The optimally doped Mn(Bi0.82Sb0.18)2Te4 photodetector achieves a responsivity of 3.02 mA W–1 with a response time of 18.5 μs at 1550 nm, and 0.795 mA W–1 with a response time of 9.0 μs at 4 μm. These values represent nearly 2 orders of magnitude improvement compared to undoped MnBi2Te4. Our results highlight band engineering as an effective strategy to enhance the infrared performance of topological material-based photodetectors, opening new avenues for high-sensitivity infrared detection.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.