Acoustoplasmonic Metasurfaces for Tunable Acoustic Wavefront Shaping with Polarized Light

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Julia E. Holland, Jiuk Byun, Nicholas Boechler and Lisa V. Poulikakos*, 
{"title":"Acoustoplasmonic Metasurfaces for Tunable Acoustic Wavefront Shaping with Polarized Light","authors":"Julia E. Holland,&nbsp;Jiuk Byun,&nbsp;Nicholas Boechler and Lisa V. Poulikakos*,&nbsp;","doi":"10.1021/acsphotonics.4c0165210.1021/acsphotonics.4c01652","DOIUrl":null,"url":null,"abstract":"<p >Plasmonic nanoparticles exhibit strong optical scattering and absorption due to enhanced coupling to incident electromagnetic waves, while their efficient photothermal heating enables effective conversion of electromagnetic to mechanical energy. In this work, we put forward a theoretical framework for acoustoplasmonics, where plasmonic nanoparticles control the acoustic wavefront with light. We model the coupled optical, thermoelastic and acoustic mechanisms for gold nanospheres (AuNSs) and nanoellipsoids (AuNEs), and find that each physical mechanism entails a distinct toolbox of parameters, which can be tailored for effective acoustoplasmonic design. Simple analytical studies are performed for AuNSs, both validating numerical models and enabling quasi-analytical wavefront shaping under long laser pulse durations. AuNEs introduce optical anisotropy, and we numerically demonstrate that the polarization-dependent optical absorption in AuNEs can lead to selective photoexcitation and subsequently polarization-tunable acoustic wave generation. Moreover, we investigate the varying acoustoplasmonic frequency regimes, where optical resonance arises due to electromagnetic frequency, while acoustic resonance relates to laser pulse duration. We demonstrate proof-of-concept acoustoplasmonic metasurface designs using these mechanisms for tunable acoustic wavefront shaping in the form of lensing and beam steering. We suggest that future acoustoplasmonic systems, optimized using the physical mechanisms discussed here, will find use in a variety of applications, including miniaturized ultrasonic imaging and high-frequency signal processing.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 2","pages":"758–767 758–767"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c01652","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic nanoparticles exhibit strong optical scattering and absorption due to enhanced coupling to incident electromagnetic waves, while their efficient photothermal heating enables effective conversion of electromagnetic to mechanical energy. In this work, we put forward a theoretical framework for acoustoplasmonics, where plasmonic nanoparticles control the acoustic wavefront with light. We model the coupled optical, thermoelastic and acoustic mechanisms for gold nanospheres (AuNSs) and nanoellipsoids (AuNEs), and find that each physical mechanism entails a distinct toolbox of parameters, which can be tailored for effective acoustoplasmonic design. Simple analytical studies are performed for AuNSs, both validating numerical models and enabling quasi-analytical wavefront shaping under long laser pulse durations. AuNEs introduce optical anisotropy, and we numerically demonstrate that the polarization-dependent optical absorption in AuNEs can lead to selective photoexcitation and subsequently polarization-tunable acoustic wave generation. Moreover, we investigate the varying acoustoplasmonic frequency regimes, where optical resonance arises due to electromagnetic frequency, while acoustic resonance relates to laser pulse duration. We demonstrate proof-of-concept acoustoplasmonic metasurface designs using these mechanisms for tunable acoustic wavefront shaping in the form of lensing and beam steering. We suggest that future acoustoplasmonic systems, optimized using the physical mechanisms discussed here, will find use in a variety of applications, including miniaturized ultrasonic imaging and high-frequency signal processing.

Abstract Image

偏振光可调谐声波前整形的声等离子体超表面
等离子体纳米粒子由于与入射电磁波的耦合增强,表现出强烈的光学散射和吸收,而其高效的光热加热使电磁能有效地转化为机械能。在这项工作中,我们提出了一个声等离子体学的理论框架,其中等离子体纳米粒子用光控制声波前。我们对金纳米球(AuNSs)和纳米椭球(AuNEs)的耦合光学、热弹性和声学机制进行了建模,并发现每种物理机制都需要一个不同的参数工具箱,可以为有效的声等离子体设计量身定制。对aass进行了简单的分析研究,既验证了数值模型,又实现了长激光脉冲持续时间下的准解析波前整形。AuNEs引入了光学各向异性,我们用数值方法证明了AuNEs中偏振相关的光吸收可以导致选择性光激发和随后的偏振可调声波的产生。此外,我们研究了不同的声等离子体频率机制,其中光共振是由电磁频率引起的,而声共振与激光脉冲持续时间有关。我们演示了概念验证声学等离子体超表面设计,使用这些机制以透镜和光束导向的形式进行可调谐声波前整形。我们建议未来的声等离子体系统,利用这里讨论的物理机制进行优化,将在各种应用中找到用途,包括小型化超声成像和高频信号处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信