Fast Free-Form Phase Mask Design for Three-Dimensional Photolithography Using Convergent Born Series

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dohyeon Lee, Moosung Lee, Bakytgul Yerenzhep, Myungjoon Kim, Herve Hugonnet, Seokwoo Jeon, Jonghwa Shin and YongKeun Park*, 
{"title":"Fast Free-Form Phase Mask Design for Three-Dimensional Photolithography Using Convergent Born Series","authors":"Dohyeon Lee,&nbsp;Moosung Lee,&nbsp;Bakytgul Yerenzhep,&nbsp;Myungjoon Kim,&nbsp;Herve Hugonnet,&nbsp;Seokwoo Jeon,&nbsp;Jonghwa Shin and YongKeun Park*,&nbsp;","doi":"10.1021/acsphotonics.4c0120110.1021/acsphotonics.4c01201","DOIUrl":null,"url":null,"abstract":"<p >Advancements in three-dimensional (3D) photolithography are crucial for enhancing the performance of devices in applications ranging from energy storage and sensors to microrobotics. Proximity-field nanopatterning (PnP), which utilizes light-shaping phase masks, has emerged as a promising method to boost productivity. This study presents a swift and effective strategy for the design of phase masks tailored to the PnP process. Conventional design methodologies, grounded in basic optical theories, have been constrained by the simplicity and limited contrast of the resulting nanopatterns. Our approach, which merges the use of a frequency-domain electromagnetic solver─termed the convergent Born series─with gradient-based optimization and GPU acceleration, successfully addresses these shortcomings. The proposed solver outperforms CPU-intensive commercial FDTD software in our 2D test case by approximately 30 times, and its computational advantage increases in 3D simulations. This approach facilitates the creation of complex, high-contrast nanostructures within practical timeframes. We validate our method’s effectiveness by engineering phase masks to produce distinct hologram patterns, such as single and double helices, thereby underscoring its utility for pioneering nanophotonic devices. Our findings propel the PnP process forward, ushering in novel avenues for the creation of sophisticated 3D nanostructures with superior optical and mechanical features.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 2","pages":"610–619 610–619"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c01201","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in three-dimensional (3D) photolithography are crucial for enhancing the performance of devices in applications ranging from energy storage and sensors to microrobotics. Proximity-field nanopatterning (PnP), which utilizes light-shaping phase masks, has emerged as a promising method to boost productivity. This study presents a swift and effective strategy for the design of phase masks tailored to the PnP process. Conventional design methodologies, grounded in basic optical theories, have been constrained by the simplicity and limited contrast of the resulting nanopatterns. Our approach, which merges the use of a frequency-domain electromagnetic solver─termed the convergent Born series─with gradient-based optimization and GPU acceleration, successfully addresses these shortcomings. The proposed solver outperforms CPU-intensive commercial FDTD software in our 2D test case by approximately 30 times, and its computational advantage increases in 3D simulations. This approach facilitates the creation of complex, high-contrast nanostructures within practical timeframes. We validate our method’s effectiveness by engineering phase masks to produce distinct hologram patterns, such as single and double helices, thereby underscoring its utility for pioneering nanophotonic devices. Our findings propel the PnP process forward, ushering in novel avenues for the creation of sophisticated 3D nanostructures with superior optical and mechanical features.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信