Challenges in PFAS Postdegradation Analysis: Insights from the PFAS-CTAB Model System

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Chanaka Navarathna*, Ransford Appianin Boateng and Long Luo*, 
{"title":"Challenges in PFAS Postdegradation Analysis: Insights from the PFAS-CTAB Model System","authors":"Chanaka Navarathna*,&nbsp;Ransford Appianin Boateng and Long Luo*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c0008310.1021/acsmeasuresciau.4c00083","DOIUrl":null,"url":null,"abstract":"<p >Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used for their oil and water-repellent properties. Their environmental persistence and potential health risks have raised significant concerns. As PFAS degrades through remediation or natural processes, they form complex mixtures of the original chemicals, transformation byproducts, and degradation additives. Analyzing PFAS after degradation presents analytical challenges due to possible chemical and physical interactions, including ion pairing, micelle formation, and complexation. These factors can significantly impact the precision and accuracy of PFAS measurements, yet they are often overlooked in PFAS degradation studies. In this work, we demonstrate that with the addition of ppb-level cetyltrimethylammonium bromide (CTAB), a cationic surfactant used in PFAS plasma-based degradation, the PFAS calibration curve linearity, sensitivity, and reproducibility are severely compromised. Isotopically labeled internal standards cannot fully correct these issues. Furthermore, the standard EPA methods 537.1, 533, and 1633 could not accurately recover PFAS concentrations in the PFAS and CTAB mixtures, with severe matrix effects observed for longer-chain and nitrogen-containing PFAS. Among these methods, Method 1633 is currently the most suitable option for postdegradation analysis. Method 1633 showed the lowest CTAB interference because this method used another weak ion pair additive, formic acid or acetic acid (in commercial lab analysis), to acidify the sample before LC–MS/MS analysis and added an isotopically labeled internal standard. For future PFAS degradation studies, we recommend systematically evaluating the matrix effect on the PFAS quantification using a recovery matrix to validate the analytical methods before use.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 1","pages":"135–144 135–144"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00083","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used for their oil and water-repellent properties. Their environmental persistence and potential health risks have raised significant concerns. As PFAS degrades through remediation or natural processes, they form complex mixtures of the original chemicals, transformation byproducts, and degradation additives. Analyzing PFAS after degradation presents analytical challenges due to possible chemical and physical interactions, including ion pairing, micelle formation, and complexation. These factors can significantly impact the precision and accuracy of PFAS measurements, yet they are often overlooked in PFAS degradation studies. In this work, we demonstrate that with the addition of ppb-level cetyltrimethylammonium bromide (CTAB), a cationic surfactant used in PFAS plasma-based degradation, the PFAS calibration curve linearity, sensitivity, and reproducibility are severely compromised. Isotopically labeled internal standards cannot fully correct these issues. Furthermore, the standard EPA methods 537.1, 533, and 1633 could not accurately recover PFAS concentrations in the PFAS and CTAB mixtures, with severe matrix effects observed for longer-chain and nitrogen-containing PFAS. Among these methods, Method 1633 is currently the most suitable option for postdegradation analysis. Method 1633 showed the lowest CTAB interference because this method used another weak ion pair additive, formic acid or acetic acid (in commercial lab analysis), to acidify the sample before LC–MS/MS analysis and added an isotopically labeled internal standard. For future PFAS degradation studies, we recommend systematically evaluating the matrix effect on the PFAS quantification using a recovery matrix to validate the analytical methods before use.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信