Online Mass Spectrometric Characterization of Oligomeric Products in High-Pressure Liquid-Phase Lignin Depolymerization Reactions

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Zhongyue Zhou*, Cunhao Cui, Linyu Zhu, Jing Zhang, Hairong Ren, Xintong Xiao and Fei Qi, 
{"title":"Online Mass Spectrometric Characterization of Oligomeric Products in High-Pressure Liquid-Phase Lignin Depolymerization Reactions","authors":"Zhongyue Zhou*,&nbsp;Cunhao Cui,&nbsp;Linyu Zhu,&nbsp;Jing Zhang,&nbsp;Hairong Ren,&nbsp;Xintong Xiao and Fei Qi,&nbsp;","doi":"10.1021/acsmeasuresciau.4c0006710.1021/acsmeasuresciau.4c00067","DOIUrl":null,"url":null,"abstract":"<p >Lignin depolymerization involves complex reactions that occur in heterogeneous environments, leading to the formation of a wide range of products with diverse molecular structures. The complexity of these products arises from the different bond strengths and locations within the lignin polymer, which makes it difficult to fully understand the reaction pathways. Conventional analytical techniques often fall short of providing a clear and comprehensive picture of the reaction mechanism. This highlights the need for more advanced methods that can offer real-time, in situ analysis to probe product evolutions and unravel the detailed mechanisms of lignin depolymerization. Herein, we present a concise perspective of the recent developments in online mass spectrometry, particularly its applications in probing heavy oligomeric products formed during lignindepolymerization. After introducing the current analytical technologies and analytical challenges, we focus on the development of online mass spectrometric method, especially those combined with batch and flow-through reactors, for the real-time characterization of lignin depolymerization products. Several key case studies are highlighted. Finally, we discuss the potential opportunities and remaining challenges in this field.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 1","pages":"9–18 9–18"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00067","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin depolymerization involves complex reactions that occur in heterogeneous environments, leading to the formation of a wide range of products with diverse molecular structures. The complexity of these products arises from the different bond strengths and locations within the lignin polymer, which makes it difficult to fully understand the reaction pathways. Conventional analytical techniques often fall short of providing a clear and comprehensive picture of the reaction mechanism. This highlights the need for more advanced methods that can offer real-time, in situ analysis to probe product evolutions and unravel the detailed mechanisms of lignin depolymerization. Herein, we present a concise perspective of the recent developments in online mass spectrometry, particularly its applications in probing heavy oligomeric products formed during lignindepolymerization. After introducing the current analytical technologies and analytical challenges, we focus on the development of online mass spectrometric method, especially those combined with batch and flow-through reactors, for the real-time characterization of lignin depolymerization products. Several key case studies are highlighted. Finally, we discuss the potential opportunities and remaining challenges in this field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信