Filling-Dependent Intertwined Electronic and Atomic Orders in the Flat-Band State of 1T-TaS2

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-02-18 DOI:10.1021/acsnano.4c13437
Yanyan Geng, Haoyu Dong, Renhong Wang, Jianfeng Guo, Shuo Mi, Le Lei, Yan Li, Li Huang, Fei Pang, Rui Xu, Weiqiang Yu, Hong-Jun Gao, Wei Ji, Weichang Zhou, Zhihai Cheng
{"title":"Filling-Dependent Intertwined Electronic and Atomic Orders in the Flat-Band State of 1T-TaS2","authors":"Yanyan Geng, Haoyu Dong, Renhong Wang, Jianfeng Guo, Shuo Mi, Le Lei, Yan Li, Li Huang, Fei Pang, Rui Xu, Weiqiang Yu, Hong-Jun Gao, Wei Ji, Weichang Zhou, Zhihai Cheng","doi":"10.1021/acsnano.4c13437","DOIUrl":null,"url":null,"abstract":"The delicate interplay among the complex intra/inter-layer electron–electron and electron–lattice interactions is the fundamental prerequisite of these exotic quantum states, such as superconductivity, nematic order, and checkerboard charge order. Here, we explore the filling-dependent multiple stable intertwined electronic and atomic orders of the flat-band state of 1<i>T</i>-TaS<sub>2</sub> encompassing hole order, phase orders, coexisting left- and right-chiral orders, and mixed phase/chiral orders via scanning tunneling microscopy (STM). Combining first-principles calculations, the emergent electronic/atomic orders can be attributed to the weakening of electron–electron correlations and stacking-dependent interlayer interactions. Moreover, achiral intermediate ring-like clusters and nematic charge density wave (CDW) states are successfully realized in intralayer chiral domain wall and interlayer heterochiral stacking regions through chiral overlap configurations. Our study not only deepens the understanding of filling-dependent electronic/atomic orders in flat-band systems but also offers perspectives for exploring exotic quantum states in correlated electronic systems.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"11 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13437","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The delicate interplay among the complex intra/inter-layer electron–electron and electron–lattice interactions is the fundamental prerequisite of these exotic quantum states, such as superconductivity, nematic order, and checkerboard charge order. Here, we explore the filling-dependent multiple stable intertwined electronic and atomic orders of the flat-band state of 1T-TaS2 encompassing hole order, phase orders, coexisting left- and right-chiral orders, and mixed phase/chiral orders via scanning tunneling microscopy (STM). Combining first-principles calculations, the emergent electronic/atomic orders can be attributed to the weakening of electron–electron correlations and stacking-dependent interlayer interactions. Moreover, achiral intermediate ring-like clusters and nematic charge density wave (CDW) states are successfully realized in intralayer chiral domain wall and interlayer heterochiral stacking regions through chiral overlap configurations. Our study not only deepens the understanding of filling-dependent electronic/atomic orders in flat-band systems but also offers perspectives for exploring exotic quantum states in correlated electronic systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信