Three-Electron Uric Acid Oxidation via Interdistance-Dependent Switching Pathways in Correlated Single-Atom Catalysts for Boosting Sensing Signals

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bowen Jiang, Heng Zhang, Rui Pan, Min Ji, Lin Zhu, Guoju Zhang, Jing Liu, Huihui Shi, Huang Huang, Shu Wan, Kuibo Yin, Litao Sun
{"title":"Three-Electron Uric Acid Oxidation via Interdistance-Dependent Switching Pathways in Correlated Single-Atom Catalysts for Boosting Sensing Signals","authors":"Bowen Jiang, Heng Zhang, Rui Pan, Min Ji, Lin Zhu, Guoju Zhang, Jing Liu, Huihui Shi, Huang Huang, Shu Wan, Kuibo Yin, Litao Sun","doi":"10.1002/anie.202500474","DOIUrl":null,"url":null,"abstract":"The overly simplistic geometric and electronic structures of single-atom catalysts have become a significant bottleneck in the field of single-atom sensing, impeding both the design of highly efficient electrochemical sensors and the establishment of structure-activity relationships. To address these challenges, we present a novel strategy to boost the sensing performance of single-atom catalysts by precisely tuning the single-atomic interdistance (SAD) in correlated single-atom catalysts (c-SACs). A series of Ru-based c-SACs (Rud=6.2 Å, Rud=7.0 Å, and Rud=9.3 Å) are synthesized with predetermined SAD values, which are comprehensively characterized by various techniques. Electrochemical studies on uric acid (UA) oxidation reveal that Rud=6.2 Å demonstrates an extraordinary sensitivity of 9.83 μA μM-1cm-2, which is superior to most of electrochemistry biosensors reported previously. Kinetic analysis and product examination unveil that the 6.2 Å Ru SAD instigates a distinctive three-electron oxidation of UA, with an extra electron transfer compared to the conventional two-electron pathway, which fundamentally enhances its sensitivity. Density functional theory calculations confirm the optimal SAD facilitates dual-site UA adsorption and accelerated charge transfer dynamics. This investigation provides novel insights into the strategic engineering of high-performance SAC-based electrochemical sensors by precisely controlling the atomic-scale structure of active sites.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500474","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The overly simplistic geometric and electronic structures of single-atom catalysts have become a significant bottleneck in the field of single-atom sensing, impeding both the design of highly efficient electrochemical sensors and the establishment of structure-activity relationships. To address these challenges, we present a novel strategy to boost the sensing performance of single-atom catalysts by precisely tuning the single-atomic interdistance (SAD) in correlated single-atom catalysts (c-SACs). A series of Ru-based c-SACs (Rud=6.2 Å, Rud=7.0 Å, and Rud=9.3 Å) are synthesized with predetermined SAD values, which are comprehensively characterized by various techniques. Electrochemical studies on uric acid (UA) oxidation reveal that Rud=6.2 Å demonstrates an extraordinary sensitivity of 9.83 μA μM-1cm-2, which is superior to most of electrochemistry biosensors reported previously. Kinetic analysis and product examination unveil that the 6.2 Å Ru SAD instigates a distinctive three-electron oxidation of UA, with an extra electron transfer compared to the conventional two-electron pathway, which fundamentally enhances its sensitivity. Density functional theory calculations confirm the optimal SAD facilitates dual-site UA adsorption and accelerated charge transfer dynamics. This investigation provides novel insights into the strategic engineering of high-performance SAC-based electrochemical sensors by precisely controlling the atomic-scale structure of active sites.
通过相关单原子催化剂中的间距开关途径实现三电子尿酸氧化,从而增强传感信号
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信