Neural Network-Assisted Dual-Functional Hydrogel-Based Microfluidic SERS Sensing for Divisional Recognition of Multimolecule Fingerprint

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Xing Wang, Shen Shen, Ning Sun, Yong Zhu, Jie Zhang
{"title":"Neural Network-Assisted Dual-Functional Hydrogel-Based Microfluidic SERS Sensing for Divisional Recognition of Multimolecule Fingerprint","authors":"Xing Wang, Shen Shen, Ning Sun, Yong Zhu, Jie Zhang","doi":"10.1021/acssensors.4c03096","DOIUrl":null,"url":null,"abstract":"To enhance the sensitivity, integration, and practicality of the Raman detection system, a deep learning-based dual-functional subregional microfluidic integrated hydrogel surface-enhanced Raman scattering (SERS) platform is proposed in this paper. First, silver nanoparticles (Ag NPs) with a homogeneous morphology were synthesized using a one-step reduction method. Second, these Ag NPs were embedded in <i>N</i>-isopropylacrylamide/poly(vinyl alcohol) (Ag NPs-NIPAM/PVA) hydrogels. Finally, a dual-functional SERS platform featuring four channels, each equipped with a switch and a detection region, was developed in conjunction with microfluidics. This platform effectively allows the flow of the test material to be directed to a specific detection region by sequential activation of the hydrogel switches with an external heating element. It then utilizes the corresponding heating element in the detection region to adjust the gaps between Ag NPs, enabling the measurement of the Raman enhancement performance in the designated SERS detection area. The dual-functional microfluidic-integrated hydrogel SERS platform enables subregional sampling and simultaneous detection of multiple molecules. The platform demonstrated excellent detection performance for Rhodamine 6G (R6G), achieving a detection limit as low as 10<sup>–10</sup> mol/L and an enhancement factor of 10<sup>7</sup>, with relative standard deviations of the main characteristic peaks below 10%. Additionally, the platform is capable of simultaneous subarea detection of four real molecules─thiram, pyrene, anthracene, and dibutyl phthalate─combined with fully connected neural network technology, which offers improved predictability, practicality, and applicability for their classification and identification.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"8 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03096","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the sensitivity, integration, and practicality of the Raman detection system, a deep learning-based dual-functional subregional microfluidic integrated hydrogel surface-enhanced Raman scattering (SERS) platform is proposed in this paper. First, silver nanoparticles (Ag NPs) with a homogeneous morphology were synthesized using a one-step reduction method. Second, these Ag NPs were embedded in N-isopropylacrylamide/poly(vinyl alcohol) (Ag NPs-NIPAM/PVA) hydrogels. Finally, a dual-functional SERS platform featuring four channels, each equipped with a switch and a detection region, was developed in conjunction with microfluidics. This platform effectively allows the flow of the test material to be directed to a specific detection region by sequential activation of the hydrogel switches with an external heating element. It then utilizes the corresponding heating element in the detection region to adjust the gaps between Ag NPs, enabling the measurement of the Raman enhancement performance in the designated SERS detection area. The dual-functional microfluidic-integrated hydrogel SERS platform enables subregional sampling and simultaneous detection of multiple molecules. The platform demonstrated excellent detection performance for Rhodamine 6G (R6G), achieving a detection limit as low as 10–10 mol/L and an enhancement factor of 107, with relative standard deviations of the main characteristic peaks below 10%. Additionally, the platform is capable of simultaneous subarea detection of four real molecules─thiram, pyrene, anthracene, and dibutyl phthalate─combined with fully connected neural network technology, which offers improved predictability, practicality, and applicability for their classification and identification.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信