Tandem-controlled lysosomal assembly of nanofibres induces pyroptosis for cancer immunotherapy

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junya Zhang, Yuxuan Hu, Xidan Wen, Zeyue Yang, Ziyi Wang, Zhiyuan Feng, He Bai, Qi Xue, Yinxing Miao, Tian Tian, Peng Zheng, Jingjing Zhang, Jie Li, Ling Qiu, Jing-Juan Xu, Deju Ye
{"title":"Tandem-controlled lysosomal assembly of nanofibres induces pyroptosis for cancer immunotherapy","authors":"Junya Zhang, Yuxuan Hu, Xidan Wen, Zeyue Yang, Ziyi Wang, Zhiyuan Feng, He Bai, Qi Xue, Yinxing Miao, Tian Tian, Peng Zheng, Jingjing Zhang, Jie Li, Ling Qiu, Jing-Juan Xu, Deju Ye","doi":"10.1038/s41565-025-01857-9","DOIUrl":null,"url":null,"abstract":"<p>Pyroptosis has emerged as a promising approach for cancer immunotherapy. However, current pyroptosis inducers lack specificity for cancer cells and have a weak antitumour immune response. Here we report a tumour-specific nanoparticle (NP-NH-D<sub>5</sub>) that activates pyroptosis by disrupting lysosomes for cancer immunotherapy. NP-NH-D<sub>5</sub> undergoes negative-to-positive charge reversal and nanoparticle-to-nanofibre transformation within tumour cell lysosomes through tandem response to extracellular matrix metallopeptidase-2 and intracellular reducing agents. The as-formed non-peptide nanofibres efficiently break the lysosomes and trigger gasdermin-D-mediated pyroptosis, leading to strong immunogenic cell death and alleviation of the immunosuppressive tumour microenvironment. In vivo, NP-NH-D<sub>5</sub> inhibits orthotopic 4T1 breast tumours, prevents metastasis and recurrence, and prolongs survival without systemic side effects. Furthermore, it greatly enhances the effectiveness of PD-L1 antibody immunotherapy in the 4T1 late-stage lung metastasis and aggressive orthotopic Pan02 pancreatic tumour models. Our research may open pathways for developing stimuli-responsive pyroptosis inducers for precise cancer immunotherapy.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"12 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01857-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyroptosis has emerged as a promising approach for cancer immunotherapy. However, current pyroptosis inducers lack specificity for cancer cells and have a weak antitumour immune response. Here we report a tumour-specific nanoparticle (NP-NH-D5) that activates pyroptosis by disrupting lysosomes for cancer immunotherapy. NP-NH-D5 undergoes negative-to-positive charge reversal and nanoparticle-to-nanofibre transformation within tumour cell lysosomes through tandem response to extracellular matrix metallopeptidase-2 and intracellular reducing agents. The as-formed non-peptide nanofibres efficiently break the lysosomes and trigger gasdermin-D-mediated pyroptosis, leading to strong immunogenic cell death and alleviation of the immunosuppressive tumour microenvironment. In vivo, NP-NH-D5 inhibits orthotopic 4T1 breast tumours, prevents metastasis and recurrence, and prolongs survival without systemic side effects. Furthermore, it greatly enhances the effectiveness of PD-L1 antibody immunotherapy in the 4T1 late-stage lung metastasis and aggressive orthotopic Pan02 pancreatic tumour models. Our research may open pathways for developing stimuli-responsive pyroptosis inducers for precise cancer immunotherapy.

Abstract Image

热蛋白沉积已成为一种很有前景的癌症免疫疗法。然而,目前的热核素诱导剂对癌细胞缺乏特异性,抗肿瘤免疫反应较弱。在这里,我们报告了一种肿瘤特异性纳米粒子(NP-NH-D5),它能通过破坏溶酶体激活热蛋白沉积,用于癌症免疫疗法。通过对细胞外基质金属肽酶-2 和细胞内还原剂的串联反应,NP-NH-D5 在肿瘤细胞溶酶体内经历了负电荷到正电荷的逆转以及纳米颗粒到纳米纤维的转变。形成的非肽纳米纤维能有效地打破溶酶体,并引发由 gasdermin-D 介导的热蛋白沉积,从而导致强免疫原性细胞死亡,缓解免疫抑制性肿瘤微环境。在体内,NP-NH-D5 可抑制正位 4T1 乳腺肿瘤,防止转移和复发,延长生存期,且无全身副作用。此外,它还大大提高了 PD-L1 抗体免疫疗法在 4T1 肺转移晚期和侵袭性正位 Pan02 胰腺肿瘤模型中的有效性。我们的研究可能会为开发刺激响应型热核素诱导剂用于精确的癌症免疫疗法开辟道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信