CuF2‐Catalyzed C‐N Cross‐Coupling of Aryl Silanes: Expanding the Scope of Chan‐Lam Type Reaction

IF 4.4 2区 化学 Q2 CHEMISTRY, APPLIED
Vishal Talukdar, Siddhartha Paul, Krishanu Mondal, Parthasarathi Das
{"title":"CuF2‐Catalyzed C‐N Cross‐Coupling of Aryl Silanes: Expanding the Scope of Chan‐Lam Type Reaction","authors":"Vishal Talukdar, Siddhartha Paul, Krishanu Mondal, Parthasarathi Das","doi":"10.1002/adsc.202401498","DOIUrl":null,"url":null,"abstract":"An efficient copper‐catalyzed Chan–Lam type N‐arylation of various amides, sulfonamides, urea, azoles, and amines has been demonstrated using a CuF2/DMSO catalytic system with structurally diverse aryl(trimethoxy)silanes under base and ligand‐free conditions. This approach facilitates effective C‐N cross‐coupling with user‐friendly organosilicon reagents without requiring an external fluoride source. CuF2 serves a dual function as both a catalyst and a desilylating agent, facilitating the cleavage of the aryl‐silane bond. The process is compatible with a broad range of substrates, ensuring high efficiency and excellent functional group compatibility. Moreover, this protocol is proven to be valuable for late‐stage modification of amide and sulfonamide‐containing drug molecules, as well as for synthesizing agrochemicals.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"64 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401498","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient copper‐catalyzed Chan–Lam type N‐arylation of various amides, sulfonamides, urea, azoles, and amines has been demonstrated using a CuF2/DMSO catalytic system with structurally diverse aryl(trimethoxy)silanes under base and ligand‐free conditions. This approach facilitates effective C‐N cross‐coupling with user‐friendly organosilicon reagents without requiring an external fluoride source. CuF2 serves a dual function as both a catalyst and a desilylating agent, facilitating the cleavage of the aryl‐silane bond. The process is compatible with a broad range of substrates, ensuring high efficiency and excellent functional group compatibility. Moreover, this protocol is proven to be valuable for late‐stage modification of amide and sulfonamide‐containing drug molecules, as well as for synthesizing agrochemicals.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Synthesis & Catalysis
Advanced Synthesis & Catalysis 化学-应用化学
CiteScore
9.40
自引率
7.40%
发文量
447
审稿时长
1.8 months
期刊介绍: Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry. The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信