Characterization of single neurons reprogrammed by pancreatic cancer

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-02-17 DOI:10.1038/s41586-025-08735-3
Vera Thiel, Simon Renders, Jasper Panten, Nicolas Dross, Katharina Bauer, Daniel Azorin, Vanessa Henriques, Vanessa Vogel, Corinna Klein, Aino-Maija Leppä, Isabel Barriuso Ortega, Jonas Schwickert, Iordanis Ourailidis, Julian Mochayedi, Jan-Philipp Mallm, Carsten Müller-Tidow, Hannah Monyer, John Neoptolemos, Thilo Hackert, Oliver Stegle, Duncan T. Odom, Rienk Offringa, Albrecht Stenzinger, Frank Winkler, Martin Sprick, Andreas Trumpp
{"title":"Characterization of single neurons reprogrammed by pancreatic cancer","authors":"Vera Thiel, Simon Renders, Jasper Panten, Nicolas Dross, Katharina Bauer, Daniel Azorin, Vanessa Henriques, Vanessa Vogel, Corinna Klein, Aino-Maija Leppä, Isabel Barriuso Ortega, Jonas Schwickert, Iordanis Ourailidis, Julian Mochayedi, Jan-Philipp Mallm, Carsten Müller-Tidow, Hannah Monyer, John Neoptolemos, Thilo Hackert, Oliver Stegle, Duncan T. Odom, Rienk Offringa, Albrecht Stenzinger, Frank Winkler, Martin Sprick, Andreas Trumpp","doi":"10.1038/s41586-025-08735-3","DOIUrl":null,"url":null,"abstract":"<p>The peripheral nervous system (PNS) orchestrates organ function in health and disease. Most cancers including pancreatic ductal adenocarcinoma (PDAC) are infiltrated by PNS neurons, contributing to the complex tumor microenvironment (TME)<sup>1,2</sup>. However, neuronal cell bodies reside in various PNS ganglia, far from the tumor mass. Thus, cancer or healthy organ-innervating neurons elude current tissue sequencing datasets. To molecularly characterize pancreas- and PDAC-innervating neurons at single cell resolution, we developed “Trace-n-seq”. This method employs retrograde tracing of axons from tissues to their respective ganglia followed by single-cell isolation and transcriptomic analysis. By characterizing &gt;5.000 individual sympathetic and sensory neurons with about 4.000 innervating PDAC or healthy pancreas we reveal novel neuronal cell types and unique molecular networks distinct to pancreas, pancreatitis, PDAC, or melanoma metastasis. We integrate single-cell datasets of innervating neurons and the TME to establish a neuro-cancer-microenvironment interactome, delineate cancer-driven neuronal reprogramming and generate a pancreatic cancer-nerve signature. Pharmacological denervation induces a proinflammatory TME and increases immune-checkpoint inhibitor effectiveness. Nab-Paclitaxel causes intra-tumor neuropathy which attenuated PDAC growth and in combination with sympathetic denervation results in synergistic tumor regression. Our multi-dimensional data reveal new insights into the networks and functions of PDAC-innervating neurons, supporting inclusion of denervation in future therapies.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"15 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08735-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The peripheral nervous system (PNS) orchestrates organ function in health and disease. Most cancers including pancreatic ductal adenocarcinoma (PDAC) are infiltrated by PNS neurons, contributing to the complex tumor microenvironment (TME)1,2. However, neuronal cell bodies reside in various PNS ganglia, far from the tumor mass. Thus, cancer or healthy organ-innervating neurons elude current tissue sequencing datasets. To molecularly characterize pancreas- and PDAC-innervating neurons at single cell resolution, we developed “Trace-n-seq”. This method employs retrograde tracing of axons from tissues to their respective ganglia followed by single-cell isolation and transcriptomic analysis. By characterizing >5.000 individual sympathetic and sensory neurons with about 4.000 innervating PDAC or healthy pancreas we reveal novel neuronal cell types and unique molecular networks distinct to pancreas, pancreatitis, PDAC, or melanoma metastasis. We integrate single-cell datasets of innervating neurons and the TME to establish a neuro-cancer-microenvironment interactome, delineate cancer-driven neuronal reprogramming and generate a pancreatic cancer-nerve signature. Pharmacological denervation induces a proinflammatory TME and increases immune-checkpoint inhibitor effectiveness. Nab-Paclitaxel causes intra-tumor neuropathy which attenuated PDAC growth and in combination with sympathetic denervation results in synergistic tumor regression. Our multi-dimensional data reveal new insights into the networks and functions of PDAC-innervating neurons, supporting inclusion of denervation in future therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信