Genomic insights into the domestication and genetic basis of yield in papaya

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Min Yang, Xiangdong Kong, Chenping Zhou, Ruibin Kuang, Xiaming Wu, Chuanhe Liu, Han He, Ze Xu, Yuerong Wei
{"title":"Genomic insights into the domestication and genetic basis of yield in papaya","authors":"Min Yang, Xiangdong Kong, Chenping Zhou, Ruibin Kuang, Xiaming Wu, Chuanhe Liu, Han He, Ze Xu, Yuerong Wei","doi":"10.1093/hr/uhaf045","DOIUrl":null,"url":null,"abstract":"Papaya (Carica papaya L.) is an important tropical and subtropical fruit crop, and understanding its genome is essential for breeding. In this study, we assembled a high-quality genome of 344.17 Mb for the newly cultivated papaya ‘Zihui,’ which contains 22 250 protein-coding genes. By integrating 201 resequenced papaya genomes, we identified four distinct papaya groups and a 34 Mb genomic region with strong domestication selection signals. Within these regions, two key genes associated with papaya yield were discovered: Cp_zihui06549, encoding a leucine-rich receptor-like protein kinase, and Cp_zihui06768, encoding the accumulation of photosystem one 1 (APO1) protein. Heterologous expression of Cp_zihui06549 in tomato confirmed that the total number of fruits in transgenic lines more than doubled compared to wild-type plants, resulting in a significant yield increase. Furthermore, we constructed a pan-genome of papaya and obtained a 77.41 Mb non-reference sequence containing 1543 genes. Within this pan-genome, 2483 variable genes we detected, including four genes annotated as the ‘terpene synthase activity’ Gene Ontology term, which were lost in cultivars during domestication. Finally, gene retention analyses were performed using gene presence and absence variation (PAV) data and differentially expressed genes across various tissues and organs. This study provides valuable insights into the genes and loci associated with phenotypes and domestication processes, laying a solid foundation for future papaya breeding efforts.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"13 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf045","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Papaya (Carica papaya L.) is an important tropical and subtropical fruit crop, and understanding its genome is essential for breeding. In this study, we assembled a high-quality genome of 344.17 Mb for the newly cultivated papaya ‘Zihui,’ which contains 22 250 protein-coding genes. By integrating 201 resequenced papaya genomes, we identified four distinct papaya groups and a 34 Mb genomic region with strong domestication selection signals. Within these regions, two key genes associated with papaya yield were discovered: Cp_zihui06549, encoding a leucine-rich receptor-like protein kinase, and Cp_zihui06768, encoding the accumulation of photosystem one 1 (APO1) protein. Heterologous expression of Cp_zihui06549 in tomato confirmed that the total number of fruits in transgenic lines more than doubled compared to wild-type plants, resulting in a significant yield increase. Furthermore, we constructed a pan-genome of papaya and obtained a 77.41 Mb non-reference sequence containing 1543 genes. Within this pan-genome, 2483 variable genes we detected, including four genes annotated as the ‘terpene synthase activity’ Gene Ontology term, which were lost in cultivars during domestication. Finally, gene retention analyses were performed using gene presence and absence variation (PAV) data and differentially expressed genes across various tissues and organs. This study provides valuable insights into the genes and loci associated with phenotypes and domestication processes, laying a solid foundation for future papaya breeding efforts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信